943 research outputs found

    Tooth Decay in Alcohol Abusers Compared to Alcohol and Drug Abusers

    Get PDF
    Alcohol and drug abuse are detrimental to general and oral health. Though we know the effects of these harmful habits on oral mucosa, their independent and combined effect on the dental caries experience is unknown and worthy of investigation. We compared 363 “alcohol only” abusers to 300 “alcohol and drug” abusers to test the hypothesis that various components of their dental caries experience are significantly different due to plausible sociobiological explanations. After controlling for the potential confounders, we observe that the “alcohol and drug” group had a 38% higher risk of having decayed teeth compared to the “alcohol only” group (P < .05). As expected, those who belonged to a higher social class (OR = 1.98; 95%  CI = 1.43–2.75) and drank wine (OR = 1.85; 95%  CI = 1.16–2.96) had a higher risk of having more filled teeth. We conclude that the risk of tooth decay among “alcohol only” abusers is significantly lower compared to “alcohol and drug” abusers

    Probing the origin of VHE emission from M 87 with MWL observations in 2010

    Full text link
    The large majority of extragalactic very high energy (VHE; E>100 GeV) sources belongs to the class of active galactic nuclei (AGN), in particular the BL Lac sub-class. AGNs are characterized by an extremely bright and compact emission region, powered by a super-massive black hole (SMBH) and an accretion disk, and relativistic outflows (jets) detected all across the electro-magnetic spectrum. In BL Lac sources the jet axis is oriented close to the line of sight, giving rise to a relativistic boosting of the emission. In radio galaxies, on the other hand, the jet makes a larger angle to the line of sight allowing to resolve the central core and the jet in great details. The giant radio galaxy M 87 with its proximity (1 6Mpc) and its very massive black hole ((3-6) x 10^9 M_solar) provides a unique laboratory to investigate VHE emission in such objects and thereby probe particle acceleration to relativistic energies near SMBH and in jets. M 87 has been established as a VHE emitter since 2005. The VHE emission displays strong variability on time-scales as short as a day. It has been subject of a large joint VHE and multi-wavelength (MWL) monitoring campaign in 2008, where a rise in the 43 GHz VLBA radio emission of the innermost region (core) was found to coincide with a flaring activity at VHE. This had been interpreted as a strong indication that the VHE emission is produced in the direct vicinity of the SMBH black hole. In 2010 again a flare at VHE was detected triggering further MWL observations with the VLBA, Chandra, and other instruments. At the same time M 87 was also observed with the Fermi-LAT telescope at GeV energies and the European VLBI Network (EVN). In this contribution preliminary results from the campaign will be presented.Comment: 5 pages, 2 figures, in the proceedings of the "International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume 355, 201

    Targeted Delivery of Epidermal Growth Factor to the Human Placenta to Treat Fetal Growth Restriction

    Get PDF
    Placental dysfunction is the underlying cause of pregnancy complications such as fetal growth restriction (FGR) and pre-eclampsia. No therapies are available to treat a poorly functioning placenta, primarily due to the risks of adverse side effects in both the mother and the fetus resulting from systemic drug delivery. The use of targeted liposomes to selectively deliver payloads to the placenta has the potential to overcome these issues. In this study, we assessed the safety and efficacy of epidermal growth factor (EGF)-loaded, peptide-decorated liposomes to improve different aspects of placental function, using tissue from healthy control pregnancies at term, and pregnancies complicated by FGR. Phage screening identified a peptide sequence, CGPSARAPC (GPS), which selectively homed to mouse placentas in vivo, and bound to the outer syncytiotrophoblast layer of human placental explants ex vivo. GPS-decorated liposomes were prepared containing PBS or EGF (50–100 ng/mL), and placental explants were cultured with liposomes for up to 48 h. Undecorated and GPS-decorated liposomes containing PBS did not affect the basal rate of amino acid transport, human chorionic gonadotropin (hCG) release or cell turnover in placental explants from healthy controls. GPS-decorated liposomes containing EGF significantly increased amino acid transporter activity in healthy control explants, but not in placental explants from women with FGR. hCG secretion and cell turnover were unaffected by EGF delivery; however, differential activation of downstream protein kinases was observed when EGF was delivered via GPS-decorated vs. undecorated liposomes. These data indicate that targeted liposomes represent a safe and useful tool for the development of new therapies for placental dysfunction, recapitulating the effects of free EGF

    Ultrafast control of donor-bound electron spins with single detuned optical pulses

    Full text link
    The ability to control spins in semiconductors is important in a variety of fields including spintronics and quantum information processing. Due to the potentially fast dephasing times of spins in the solid state [1-3], spin control operating on the picosecond or faster timescale may be necessary. Such speeds, which are not possible to attain with standard electron spin resonance (ESR) techniques based on microwave sources, can be attained with broadband optical pulses. One promising ultrafast technique utilizes single broadband pulses detuned from resonance in a three-level Lambda system [4]. This attractive technique is robust against optical pulse imperfections and does not require a fixed optical reference phase. Here we demonstrate the principle of coherent manipulation of spins theoretically and experimentally. Using this technique, donor-bound electron spin rotations with single-pulse areas exceeding pi/4 and two-pulses areas exceeding pi/2 are demonstrated. We believe the maximum pulse areas attained do not reflect a fundamental limit of the technique and larger pulse areas could be achieved in other material systems. This technique has applications from basic solid-state ESR spectroscopy to arbitrary single-qubit rotations [4, 5] and bang-bang control[6] for quantum computation.Comment: 15 pages, 4 figures, submitted 12/2008. Since the submission of this work we have become aware of related work: J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320: 349-352 (2008

    Mass equidistribution of Hilbert modular eigenforms

    Full text link
    Let F be a totally real number field, and let f traverse a sequence of non-dihedral holomorphic eigencuspforms on GL(2)/F of weight (k_1,...,k_n), trivial central character and full level. We show that the mass of f equidistributes on the Hilbert modular variety as max(k_1,...,k_n) tends to infinity. Our result answers affirmatively a natural analogue of a conjecture of Rudnick and Sarnak (1994). Our proof generalizes the argument of Holowinsky-Soundararajan (2008) who established the case F = Q. The essential difficulty in doing so is to adapt Holowinsky's bounds for the Weyl periods of the equidistribution problem in terms of manageable shifted convolution sums of Fourier coefficients to the case of a number field with nontrivial unit group.Comment: 40 pages; typos corrected, nearly accepted for

    Gas morphology and energetics at the surface of PDRs: new insights with Herschel observations of NGC 7023

    Get PDF
    We investigate the physics and chemistry of the gas and dust in dense photon-dominated regions (PDRs), along with their dependence on the illuminating UV field. Using Herschel-HIFI observations, we study the gas energetics in NGC 7023 in relation to the morphology of this nebula. NGC 7023 is the prototype of a PDR illuminated by a B2V star and is one of the key targets of Herschel. Our approach consists in determining the energetics of the region by combining the information carried by the mid-IR spectrum (extinction by classical grains, emission from very small dust particles) with that of the main gas coolant lines. In this letter, we discuss more specifically the intensity and line profile of the 158 micron (1901 GHz) [CII] line measured by HIFI and provide information on the emitting gas. We show that both the [CII] emission and the mid-IR emission from polycyclic aromatic hydrocarbons (PAHs) arise from the regions located in the transition zone between atomic and molecular gas. Using the Meudon PDR code and a simple transfer model, we find good agreement between the calculated and observed [CII] intensities. HIFI observations of NGC 7023 provide the opportunity to constrain the energetics at the surface of PDRs. Future work will include analysis of the main coolant line [OI] and use of a new PDR model that includes PAH-related species.Comment: Accepted for publication in Astronomy and Astrophysics Letters (Herschel HIFI special issue), 5 pages, 5 figure
    • 

    corecore