5 research outputs found
Multiple micronutrient supplementation improves vitamin B12 and folate concentrations of HIV infected children in Uganda: a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>The effect of multiple micronutrient supplementation on vitamin B<sub>12 </sub>and folate has hither to not been reported in African HIV infected children. This paper describes vitamin B<sub>12 </sub>and folate status of Ugandan HIV infected children aged 1-5 years and reports the effect of multiple micronutrient supplementation on serum vitamin B<sub>12 </sub>and folate concentrations.</p> <p>Methods</p> <p>Of 847 children who participated in a multiple micronutrient supplementation trial, 214 were assessed for vitamin B<sub>12 </sub>and folate concentrations pre and post supplementation. One hundred and four children were randomised to two times the recommended dietary allowance (RDA) of a 14 multiple micronutrient supplement (MMS) and 114 to a 'standard of care' supplement of 6 multivitamins (MV). Serum vitamin B<sub>12 </sub>was measured by an electrochemiluminescence immunoassay and folate by a competitive protein-binding assay using Modular E (Roche) automatic analyzer. Vitamin B<sub>12 </sub>concentrations were considered low if less than 221picomoles per litre (pmol/L) and folate if < 13.4 nanomoles per litre (nmol/L). The Wilcoxon Signed Ranks test was used to measure the difference between pre and post supplementation concentrations.</p> <p>Results</p> <p>Vitamin B<sub>12 </sub>was low in 60/214 (28%) and folate in 62/214 (29.0%) children. In the MMS group, the median concentration (IQR) of vitamin B<sub>12 </sub>at 6 months was 401.5 (264.3 - 518.8) pmol/L compared to the baseline of 285.5 (216.5 - 371.8) pmol/L, p < 0.001. The median (IQR) folate concentrations increased from 17.3 (13.5 - 26.6) nmol/L to 27.7 (21.1 - 33.4) nmol/L, p < 0.001. In the 'standard of care' MV supplemented group, the median concentration (IQR) of vitamin B<sub>12 </sub>at 6 months was 288.5 (198.8 - 391.0) pmol/L compared to the baseline of 280.0 (211.5 - 386.3) pmol/L while the median (IQR) folate concentrations at 6 months were 16.5 (11.7 - 22.1) nmol/L compared to 15.7 (11.9 - 22.1) nmol/L at baseline. There was a significant difference in the MMS group in both vitamin B<sub>12 </sub>and folate concentrations but no difference in the MV group.</p> <p>Conclusions</p> <p>Almost a third of the HIV infected Ugandan children aged 1-5 years had low serum concentrations of vitamin B<sub>12 </sub>and folate. Multiple micronutrient supplementation compared to the 'standard of care' supplement of 6 multivitamins improved the vitamin B<sub>12 </sub>and folate status of HIV infected children in Uganda.</p> <p>Trial registration</p> <p><url>http://ClinicalTrials.gov</url><a href="http://www.clinicaltrials.gov/ct2/show/NCT00122941">NCT00122941</a>)</p
Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States.
Data on the detailed clinical progression of COVID-19 in conjunction with epidemiological and virological characteristics are limited. In this case series, we describe the first 12 US patients confirmed to have COVID-19 from 20 January to 5 February 2020, including 4 patients described previously1,2,3. Respiratory, stool, serum and urine specimens were submitted for SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) testing, viral culture and whole genome sequencing. Median age was 53 years (range: 21–68); 8 patients were male. Common symptoms at illness onset were cough (n = 8) and fever (n = 7). Patients had mild to moderately severe illness; seven were hospitalized and demonstrated clinical or laboratory signs of worsening during the second week of illness. No patients required mechanical ventilation and all recovered. All had SARS-CoV-2 RNA detected in respiratory specimens, typically for 2–3 weeks after illness onset. Lowest real-time PCR with reverse transcription cycle threshold values in the upper respiratory tract were often detected in the first week and SARS-CoV-2 was cultured from early respiratory specimens. These data provide insight into the natural history of SARS-CoV-2. Although infectiousness is unclear, highest viral RNA levels were identified in the first week of illness. Clinicians should anticipate that some patients may worsen in the second week of illness