18 research outputs found

    A pre‐Miocene Irano‐Turanian cradle: Origin and diversification of the species‐rich monocot genus Gagea (Liliaceae)

    No full text
    Abstract The Irano‐Turanian (IT) floristic region is considered an important center of origin for many taxa. However, there is a lack of studies dealing with typical IT genera that also occur in neighboring areas. The species‐rich monocot genus Gagea Salisb. shows a center of diversity in IT region and a distribution in adjacent regions, therefore representing a good study object to investigate spatial and temporal relationships among IT region and its neighboring areas (East Asia, Euro‐Siberia, Himalaya, and Mediterranean). We aimed at (a) testing the origin of the genus and of its major lineages in the IT region, (b) reconstructing divergence times, and (c) reconstructing colonization events. To address these problems, sequences of the ribosomal DNA internal transcribed spacer (ITS) region of 418 individuals and chloroplast intergenic spacers sequences (psbA‐trnH, trnL‐trnF) of 497 individuals, representing 116 species from all sections of the genus and nearly its entire distribution area were analyzed. Divergence times were estimated under a random molecular clock based on nrITS phylogeny, which was the most complete data set regarding the representation of species and distribution areas. Ancestral distribution ranges were estimated for the nrITS data set as well as for a combined data set, revealing that Gagea most likely originated in southwestern Asia. This genus first diversified there starting in the Early Miocene. In the Middle Miocene, Gagea migrated to the Mediterranean and to East Asia, while migration into Euro‐Siberia took place in the Late Miocene. During the Pleistocene, the Arctic was colonized and Gagea serotina, the most widespread species, reached North America. The Mediterranean basin was colonized multiple times from southwestern Asia or Euro‐Siberia. Most of the currently existing species originated during the last 3 Ma

    Data from: A pre-Miocene Irano-Turanian cradle: origin and diversification of the species-rich monocot genus Gagea (Liliaceae)

    No full text
    The Irano‐Turanian (IT) floristic region is considered an important centre of origin for many taxa. However, there is a lack of studies dealing with typical IT genera that also occur in neighbouring areas. The species-rich monocot genus Gagea Salisb. shows a centre of diversity in IT region and a distribution in adjacent regions, therefore representing a good study object to investigate spatial and temporal relationships among IT region and its neighbouring areas (East-Asia, Euro-Siberia, Himalaya, and Mediterranean). We aimed at (i) testing the origin of the genus and of its major lineages in the IT region, (ii) reconstructing divergence times and (iii) reconstructing colonisation events. To address these problems, sequences of the ribosomal DNA internal transcribed spacer (ITS) region of 418 individuals and chloroplast intergenic spacers sequences (psbA-trnH, trnL-trnF) of 497 individuals, representing 116 species from all sections of the genus and nearly its entire distribution area were analysed. Divergence times were estimated under a random molecular clock based on nrITS phylogeny, which was the most complete data set regarding the representation of species and distribution areas. Ancestral distribution ranges were estimated for the nrITS data set as well as for a combined data set, revealing that Gagea most likely originated in southwestern Asia. This genus first diversified there starting in the Early Miocene. In the Middle Miocene, Gagea migrated to the Mediterranean and to East Asia, while migration into Euro-Siberia took place in the Late Miocene. During the Pleistocene, the Arctic was colonised and Gagea serotina, the most widespread species, reached North America. The Mediterranean basin was colonised multiple times from southwestern Asia or Euro-Siberia. Most of the currently existing species originated during the last 3 Ma

    Biogeography of Gagea Appendix including TableS1, Figures S1-S4

    No full text
    Includes the information on studied material (voucher, origin and references, origin), cpDNA haplotype (HT) and ITS type and Gene bank accession numbers (European Nucleotide Archive) and additional phylogenetic trees

    A new Serbian endemic species of the genus Crocus (Iridaceae)

    No full text
    Recent research within the genus Crocus (Iridaceae) let us doubt that Crocus adamii Gay from Serbia represents the same taxon as C. adamii s. str. of the locus classicus in the Caucasian Mountains. The latter belongs to a group of crocuses, which is distributed from the Anatolian Diagonal, a mountain belt in inner Anatolia, to Iran and the Caucasian Mountains. To infer (i) if the Serbian C. adamii represents a new species and (ii) its taxonomical and phylogenetic affiliation within the genus we combined morphological and molecular investigations. The results show the presence of a morphologically and molecularly differentiated lineages, which both share a close relationship e.g. to C. alexandrii, C. chrysanthus, and C. weldenii but not to C. adamii s. str., which indicates a new species. As a result, we here describe C. randjeloviciorum to honor the Serbian botanists Novica and Vladimir Ranđelović

    Disentangling <i>Crocus</i> Series <i>Verni</i> and Its Polyploids

    No full text
    Spring crocuses, the eleven species within Crocus series Verni (Iridaceae), consist of di- and tetraploid cytotypes. Among them is a group of polyploids from southeastern Europe with yet-unclear taxonomic affiliation. Crocuses are generally characterized by complex dysploid chromosome number changes, preventing a clear correlation between these numbers and ploidy levels. To reconstruct the evolutionary history of series Verni and particularly its polyploid lineages associated with C. heuffelianus, we used an approach combining phylogenetic analyses of two chloroplast regions, 14 nuclear single-copy genes plus rDNA spacers, genome-wide genotyping-by-sequencing (GBS) data, and morphometry with ploidy estimations through genome size measurements, analysis of genomic heterozygosity frequencies and co-ancestry, and chromosome number counts. Chromosome numbers varied widely in diploids with 2n = 8, 10, 12, 14, 16, and 28 and tetraploid species or cytotypes with 2n = 16, 18, 20, and 22 chromosomes. Crocus longiflorus, the diploid with the highest chromosome number, possesses the smallest genome (2C = 3.21 pg), while the largest diploid genomes are in a range of 2C = 7–8 pg. Tetraploid genomes have 2C values between 10.88 pg and 12.84 pg. Heterozygosity distribution correlates strongly with genome size classes and allows discernment of di- and tetraploid cytotypes. Our phylogenetic analyses showed that polyploids in the C. heuffelianus group are allotetraploids derived from multiple and partly reciprocal crosses involving different genotypes of diploid C. heuffelianus (2n = 10) and C. vernus (2n = 8). Dysploid karyotype changes after polyploidization resulted in the tetraploid cytotypes with 20 and 22 chromosomes. The multi-data approach we used here for series Verni, combining evidence from nuclear and chloroplast phylogenies, genome sizes, chromosome numbers, and genomic heterozygosity for ploidy estimations, provides a way to disentangle the evolution of plant taxa with complex karyotype changes that can be used for the analysis of other groups within Crocus and beyond. Comparing these results with morphometric analysis results in characters that can discern the different taxa currently subsumed under C. heuffelianus.</i

    Development of microsatellite markers and assembly of the plastid genome in Cistanthe longiscapa (Montiaceae) based on low-coverage whole genome sequencing.

    No full text
    Cistanthe longiscapa is an endemic annual herb and characteristic element of the Chilean Atacama Desert. Principal threats are the destruction of its seed deposits by human activities and reduced germination rates due to the decreasing occurrence of precipitation events. To enable population genetic and phylogeographic analyses in this species we performed paired-end shotgun sequencing (2x100 bp) of genomic DNA on the Illumina HiSeq platform and identified microsatellite (SSR) loci in the resulting sequences. From 29 million quality-filtered read pairs we obtained 549,174 contigs (average length 614 bp; N50 = 904). Searching for SSRs revealed 10,336 loci with microsatellite motifs. Initially, we designed primers for 96 loci, which were tested for PCR amplification on three C. longiscapa individuals. Successfully amplifying loci were further tested on eight individuals to screen for length variation in the resulting amplicons, and the alleles were exemplarily sequenced to infer the basis for the observed length variation. Finally we arrived at 26 validated SSR loci for population studies in C. longiscapa, which resulted in 146 bi-allelic SSR markers in our test sample of eight individuals. The genomic sequences were also used to assemble the plastid genome of C. longiscapa, which provides an additional set of maternally inherited genetic markers

    Ancient Artworks and Crocus Genetics Both Support Saffron’s Origin in Early Greece

    No full text
    Saffron crocus (Crocus sativus) is a male-sterile, triploid flower crop, and source of the spice and colorant saffron. For over three millennia, it was cultivated across the Mediterranean, including ancient Greece, Persia, and other cultures, later spreading all over the world. Despite saffron crocus’ early omnipresence, its origin has been the matter of a century-old debate, in terms of area and time as well as parental species contribution. While remnants of the ancient arts, crafts, and texts still provide hints on its origin, modern genetics has the potential to efficiently follow these leads, thus shedding light on new possible lines of descent. In this review, we follow ancient arts and recent genetics to trace the evolutionary origin of saffron crocus. We focus on the place and time of saffron domestication and cultivation, and address its presumed autopolyploid origin involving cytotypes of wild Crocus cartwrightianus. Both ancient arts from Greece, Iran, and Mesopotamia as well as recent cytogenetic and comparative next-generation sequencing approaches point to saffron’s emergence and domestication in ancient Greece, showing how both disciplines converge in tracing its origin

    Ancient Artworks and Crocus Genetics Both Support Saffron’s Origin in Early Greece

    No full text
    Saffron crocus (Crocus sativus) is a male-sterile, triploid flower crop, and source of the spice and colorant saffron. For over three millennia, it was cultivated across the Mediterranean, including ancient Greece, Persia, and other cultures, later spreading all over the world. Despite saffron crocus’ early omnipresence, its origin has been the matter of a century-old debate, in terms of area and time as well as parental species contribution. While remnants of the ancient arts, crafts, and texts still provide hints on its origin, modern genetics has the potential to efficiently follow these leads, thus shedding light on new possible lines of descent. In this review, we follow ancient arts and recent genetics to trace the evolutionary origin of saffron crocus. We focus on the place and time of saffron domestication and cultivation, and address its presumed autopolyploid origin involving cytotypes of wild Crocus cartwrightianus. Both ancient arts from Greece, Iran, and Mesopotamia as well as recent cytogenetic and comparative next-generation sequencing approaches point to saffron’s emergence and domestication in ancient Greece, showing how both disciplines converge in tracing its origin

    Phylogeography of Artemisia frigida (Anthemideae, Asteraceae) based on genotyping-by-sequencing and plastid DNA data: migration through Beringia

    No full text
    Artemisia frigida is a temperate grassland species that has the largest natural range among its genus, with occurrences across the temperate grassland biomes of Eurasia and North America. Despite its wide geographic range, we know little about the species' distribution history. Hence, we conducted a phylogeographical study to test the hypothesis that the species' distribution pattern is related to a potential historical migration over the 'Bering land bridge'. We applied two molecular approaches: Genotyping-by-Sequencing (GBS) and Sanger sequencing of the plastid intergenic spacer region (rpl32 - trnL) to investigate genetic differentiation and relatedness among 21 populations from North America, Middle Asia, Central Asia and the Russian Far East. Furthermore, we identified the ploidy level of individuals based on GBS data. Our results indicate that A. frigida originated in Asia, spread northwards to the Far East and then to North America across the Bering Strait. We found a pronounced genetic structuring between Middle and Central Asian populations with mixed ploidy levels, tetraploids in the Far East, and nearly exclusively diploids in North America except for one individual. According to phylogenetic analysis, two populations of Kazakhstan (KZ2 and KZ3) represent the most likely ancestral diploids that constitute the basally branching lineages, and subsequent polyploidization has occurred on several occasions independently. Mantel tests revealed weak correlations between genetic distance and geographical distance and climatic conditions, which indicates that paleoclimatic fluctuations may have more profoundly influenced A. frigida's spatial genetic structure and distribution than the current environment

    Plant migration under long-lasting hyperaridity – phylogenomics unravels recent biogeographic history in one of the oldest deserts on Earth

    No full text
    The post-Miocene climatic histories of arid environments have been identified as key drivers of dispersal and diversification. Here, we investigate how climatic history correlates with the historical biogeography of the Atacama Desert genus Cristaria (Malvaceae). We analyze phylogenetic relationships and historical biogeography by using next-generation sequencing (NGS), molecular clock dating, Dispersal Extinction Cladogenesis and Bayesian sampling approaches. We employ a novel way to identify biogeographically meaningful regions as well as a rarely utilized program permitting the use of dozens of ancestral areas. Partial incongruence between the established taxonomy and our phylogenetic data, argue for a complex historical biogeography with repeated introgression and incomplete lineage sorting. Cristaria originated in the central southern part of the Atacama Desert, from there the genus colonized other areas from the late Miocene onwards. The more recently diverged lineages appear to have colonized different habitats in the Atacama Desert during pluvial phases of the Pliocene and early Pleistocene. We show that NGS combined with near-comprehensive sampling can provide an unprecedented degree of phylogenetic resolution and help to correlate the historical biogeography of plant communities with cycles of arid and pluvial phases
    corecore