373 research outputs found

    Body composition in childhood obesity.

    Get PDF
    Childhood obesity has been increasing rapidly. Previous work investigating body composition in obese children and adolescents has relied primarily on body mass index (BMI), or on measures that assume constant properties of fat-free mass (FFM). This limits our understanding of the effect of treatment. My PhD is divided into three aims. First, I explored differences in body composition between obese and non-obese children using multi-component models. Second, I investigated the effectiveness of two weight-loss programmes (a randomised controlled trial adopting the traffic-light program (TLP), and a pilot study evaluating treatment using Metformin). Third, I evaluated a bio-electrical impedance analysis (BIA) machine (TANITA BC-418 MA) as a clinical tool for assessing body composition in obese children.;Aim 1: obese children had greater hydration of FFM this limits the accuracy of using techniques that assume constant FFM properties. Taking this into account, obese children had increased fat mass (FM) and FFM, particularly FM in the abdomen region.;Aim 2: analyses from the TLP revealed that treatment and control groups significantly lost 0.1 BMI SDS during the trial but did not significantly differ for any of the body composition outcomes. A further analysis revealed that there was a significant reduction in BMI SDS and FM but an increase in FFM in the period when obese children were treated versus an increase in BMI SDS and FM in the period when they were left. Results from the Metformin programme revealed no significant change in body composition following 6 months or 1 year treatment.;Aim 3: Using a manufacturer's equations, TANITA was not accurate at assessing body composition or its change over time. My new equations had no systematic bias in relation to body fatness, although an error of the FFM estimate of 2.2 kg, and may be used to guide management in clinical practice

    Checklist of the Benthic Marine Plants of the Madeira Archipelago.

    Get PDF
    Copyright © 2001 by Walter de Gruyter.A checklist of the benthic marine plants of the archipelago of Madeira is presented based on published information and personal observations. This list includes 1 Spermatophyte and 359 algal species, comprising 64 Chlorophycota, 64 Chromophycota and 231 Rhodophycota. Fifteen doubtful records for the area are also included

    Mechanical detection and pain thresholds: comparability of devices using stepped and ramped stimuli

    Get PDF
    Quantitative sensory testing is used to assess somatosensory function in humans. The protocol of the German Research Network on Neuropathic Pain (DFNS) provides comprehensive normative values using defined tools; however, some of these may not be feasible in low-resource settings. Objectives: To compare the standard DFNS devices for assessment of mechanosensory function to a low resource tool, the Sorri-Bauru-monofilaments. Methods: Mechanical detection thresholds (MDT), pain thresholds (MPT), and suprathreshold pinprick ratings (pain sensitivity: MPS) were measured over cheek, hand dorsum, and fingertip in 13 healthy subjects (7 female, aged 21-44 years). Mechanical detection threshold was assessed with DFNS standard glass monofilaments (0.25-512 mN, 0.5 mm tip) and nylon monofilaments (Sorri-Bauru; 0.5-3000 mN). MPT was assessed with DFNS standard cylindrical probes (8-512 mN, 0.25 mm tip), Sorri-Bauru monofilaments, and with ramped stimuli using an electronic von Frey aesthesiometer (10 mN/s or 100 mN/s, 0.20 mm tip). MPS was measured in response to stepped and ramped pinpricks (128 and 256 mN). Results: Mechanical detection thresholds were the same for DFNS and Sorri-Bauru monofilaments. For MPT, Sorri-Bauru filaments yielded lower values than PinPricks over face but not hand. Pain thresholds were higher at all test sites for ramped than stepped pinpricks (P < 0.01). Suprathreshold ratings were lower for ramped than stepped pinpricks (P < 0.05). Conclusion: Sorri-Bauru filaments are acceptable substitutes for DFNS standards in estimating tactile sensitivity, but are not consistent with standard probes for pinprick sensitivity because of their nonstandardized tips. Ramped stimuli overestimated MPT and underestimated MPS due to reaction time artefacts and therefore need their own normative values

    Gender discrepancy in research activities during radiology residency

    Get PDF
    Objective: To investigate the presence of gender disparity in academic involvement during radiology residency and to identify and characterize any gender differences in perceived barriers for conducting research. / Methods: An international call for participation in an online survey was promoted via social media and through multiple international and national radiological societies. A 35-question survey invited radiology trainees worldwide to answer questions regarding exposure and barriers to academic radiology during their training. Gender differences in response proportions were analyzed using either Fisher’s exact or chi-squared tests. / Results: Eight hundred fifty-eight participants (438 men, 420 women) from Europe (432), Asia (241), North and South America (144), Africa (37), and Oceania (4) completed the survey. Fewer women radiology residents were involved in research during residency (44.3%, 186/420 vs 59.4%, 260/438; p ≤ 0.0001) and had fewer published original articles (27.9%, 117/420 vs. 40.2%, 176/438; p = 0.001). Women were more likely to declare gender as a barrier to research (24.3%, 102/420 vs. 6.8%, 30/438; p < 0.0001) and lacked mentorship/support from faculty (65%, 273/420 vs. 55.7%, 244/438; p = 0.0055). Men were more likely to declare a lack of time (60.3%, 264/438 vs. 50.7%, 213/420; p = 0.0049) and lack of personal interest (21%, 92/438 vs. 13.6%, 57/420, p = 0.0041) in conducting research. / Conclusion: Fewer women were involved in academic activities during radiology residency, resulting in fewer original published studies compared to their men counterparts. This is indicative of an inherent gender imbalance. Lack of mentorship reported by women radiologists was a main barrier to research

    Are Ethnic and Gender Specific Equations Needed to Derive Fat Free Mass from Bioelectrical Impedance in Children of South Asian, Black African-Caribbean and White European Origin? Results of the Assessment of Body Composition in Children Study

    Get PDF
    Background Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat. Methods Cross-sectional study of children aged 8–10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height2/Z); C: FFM = linear combination(height2/Z+weight)}. Results Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set. Conclusions Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences

    Using self-organizing maps to investigate environmental factors regulating colony size and breeding success of the White Stork (Ciconia ciconia)

    Get PDF
    We studied variations in the size of breeding colonies and in breeding performance of White Storks Ciconia ciconia in 2006–2008 in north-east Algeria. Each colony site was characterized using 12 environmental variables describing the physical environment, land-cover categories, and human activities, and by three demographic parameters: the number of breeding pairs, the number of pairs with chicks, and the number of fledged chicks per pair. Generalized linear mixed models and the self-organizing map algorithm (SOM, neural network) were used to investigate effects of biotic, abiotic, and anthropogenic factors on demographic parameters and on their relationships. Numbers of breeding pairs and of pairs with chicks were affected by the same environmental factors, mainly anthropogenic, which differed from those affecting the number of fledged chicks per pair. Numbers of fledged chicks per pair was not affected by colony size or by the number of nests with chicks. The categorization of the environmental variables into natural and anthropogenic, in connection with demographic parameters, was relevant to detect factors explaining variation in colony size and breeding parameters. The SOM proved a relevant tool to help determine actual dynamics in White Stork colonies, and thus to support effective conservation decisions at a regional scale

    Development and validation of a prediction model for fat mass in children and adolescents: Meta-analysis using individual participant data

    Get PDF
    © Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to. To develop and validate a prediction model for fat mass in children aged 4-15 years using routinely available risk factors of height, weight, and demographic information without the need for more complex forms of assessment. Design Individual participant data meta-analysis. Setting Four population based cross sectional studies and a fifth study for external validation, United Kingdom. Participants A pooled derivation dataset (four studies) of 2375 children and an external validation dataset of 176 children with complete data on anthropometric measurements and deuterium dilution assessments of fat mass. Main outcome measure Multivariable linear regression analysis, using backwards selection for inclusion of predictor variables and allowing non-linear relations, was used to develop a prediction model for fat-free mass (and subsequently fat mass by subtracting resulting estimates from weight) based on the four studies. Internal validation and then internal-external cross validation were used to examine overfitting and generalisability of the model\u27s predictive performance within the four development studies; external validation followed using the fifth dataset. Results Model derivation was based on a multi-ethnic population of 2375 children (47.8% boys, n=1136) aged 4-15 years. The final model containing predictor variables of height, weight, age, sex, and ethnicity had extremely high predictive ability (optimism adjusted R 2: 94.8%, 95% confidence interval 94.4% to 95.2%) with excellent calibration of observed and predicted values. The internal validation showed minimal overfitting and good model generalisability, with excellent calibration and predictive performance. External validation in 176 children aged 11-12 years showed promising generalisability of the model (R 2: 90.0%, 95% confidence interval 87.2% to 92.8%) with good calibration of observed and predicted fat mass (slope: 1.02, 95% confidence interval 0.97 to 1.07). The mean difference between observed and predicted fat mass was -1.29 kg (95% confidence interval -1.62 to -0.96 kg). Conclusion The developed model accurately predicted levels of fat mass in children aged 4-15 years. The prediction model is based on simple anthropometric measures without the need for more complex forms of assessment and could improve the accuracy of assessments for body fatness in children (compared with those provided by body mass index) for effective surveillance, prevention, and management of clinical and public health obesity

    Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships

    Get PDF
    Due to the geographical location and paleobiogeography of the Canary Islands, the seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions
    corecore