62 research outputs found

    The evolution of the four subunits of voltage-gated calcium channels : ancient roots, increasing complexity, and multiple losses

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Genome Biology and Evolution 6 (2014): 2210-2217, doi:10.1093/gbe/evu177.The alpha subunits of voltage-gated calcium channels (Cavs) are large transmembrane proteins responsible for crucial physiological processes in excitable cells. They are assisted by three auxiliary subunits that can modulate their electrical behavior. Little is known about the evolution and roles of the various subunits of Cavs in nonbilaterian animals and in nonanimal lineages. For this reason, we mapped the phyletic distribution of the four channel subunits and reconstructed their phylogeny. Although alpha subunits have deep evolutionary roots as ancient as the split between plants and opistokonths, beta subunits appeared in the last common ancestor of animals and their close-relatives choanoflagellates, gamma subunits are a bilaterian novelty and alpha2/delta subunits appeared in the lineage of Placozoa, Cnidaria, and Bilateria. We note that gene losses were extremely common in the evolution of Cavs, with noticeable losses in multiple clades of subfamilies and also of whole Cav families. As in vertebrates, but not protostomes, Cav channel genes duplicated in Cnidaria. We characterized by in situ hybridization the tissue distribution of alpha subunits in the sea anemone Nematostella vectensis, a nonbilaterian animal possessing all three Cav subfamilies common to Bilateria. We find that some of the alpha subunit subtypes exhibit distinct spatiotemporal expression patterns. Further, all six sea anemone alpha subunit subtypes are conserved in stony corals, which separated from anemones 500 MA. This unexpected conservation together with the expression patterns strongly supports the notion that these subtypes carry unique functional roles

    The evolution of the four subunits of voltage-gated calcium channels : ancient roots, increasing complexity, and multiple losses

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Genome Biology and Evolution 6 (2014): 2210-2217, doi:10.1093/gbe/evu177.The alpha subunits of voltage-gated calcium channels (Cavs) are large transmembrane proteins responsible for crucial physiological processes in excitable cells. They are assisted by three auxiliary subunits that can modulate their electrical behavior. Little is known about the evolution and roles of the various subunits of Cavs in nonbilaterian animals and in nonanimal lineages. For this reason, we mapped the phyletic distribution of the four channel subunits and reconstructed their phylogeny. Although alpha subunits have deep evolutionary roots as ancient as the split between plants and opistokonths, beta subunits appeared in the last common ancestor of animals and their close-relatives choanoflagellates, gamma subunits are a bilaterian novelty and alpha2/delta subunits appeared in the lineage of Placozoa, Cnidaria, and Bilateria. We note that gene losses were extremely common in the evolution of Cavs, with noticeable losses in multiple clades of subfamilies and also of whole Cav families. As in vertebrates, but not protostomes, Cav channel genes duplicated in Cnidaria. We characterized by in situ hybridization the tissue distribution of alpha subunits in the sea anemone Nematostella vectensis, a nonbilaterian animal possessing all three Cav subfamilies common to Bilateria. We find that some of the alpha subunit subtypes exhibit distinct spatiotemporal expression patterns. Further, all six sea anemone alpha subunit subtypes are conserved in stony corals, which separated from anemones 500 MA. This unexpected conservation together with the expression patterns strongly supports the notion that these subtypes carry unique functional roles

    Voltage-Gated Sodium Channel in Grasshopper Mice Defends Against Bark Scorpion Toxin

    Get PDF
    Painful venoms are used to deter predators. Pain itself, however, can signal damage and thus serves an important adaptive function. Evolution to reduce general pain responses, although valuable for preying on venomous species, is rare, likely because it comes with the risk of reduced response to tissue damage. Bark scorpions capitalize on the protective pain pathway of predators by inflicting intensely painful stings. However, grasshopper mice regularly attack and consume bark scorpions, grooming only briefly when stung. Bark scorpion venom induces pain in many mammals (house mice, rats, humans) by activating the voltage-gated Na+ channel Nav1.7, but has no effect on Nav1.8. Grasshopper mice Nav1.8 has amino acid variants that bind bark scorpion toxins and inhibit Na+ currents, blocking action potential propagation and inducing analgesia. Thus, grasshopper mice have solved the predator-pain problem by using a toxin bound to a nontarget channel to block transmission of the pain signals the venom itself is initiating

    Expansion of voltage-dependent Na+ channel gene family in early tetrapods coincided with the emergence of terrestriality and increased brain complexity

    Get PDF
    Author Posting. © The Authors, 2010. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Molecular Biology and Evolution 28 (2011): 1415-1424, doi:10.1093/molbev/msq325.Mammals have 10 voltage-dependent sodium (Nav) channel genes. Nav channels are expressed in different cell types with different sub-cellular distributions and are critical for many aspects of neuronal processing. The last common ancestor of teleosts and tetrapods had four Nav channel genes presumably on four different chromosomes. In the lineage leading to mammals a series of tandem duplications on two of these chromosomes more than doubled the number of Nav channel genes. It is unknown when these duplications occurred, whether they occurred against a backdrop of duplication of flanking genes on their chromosomes, or as an expansion of ion channel genes in general. We estimated key dates of the Nav channel gene family expansion by phylogenetic analysis using teleost, elasmobranch, lungfish, amphibian, avian, lizard, and mammalian Nav channel sequences, as well as chromosomal synteny for tetrapod genes. We tested, and exclude, the null hypothesis that Nav channel genes reside in regions of chromosomes prone to duplication by demonstrating the lack of duplication or duplicate retention of surrounding genes. We also find no comparable expansion in other voltage dependent ion channel gene families of tetrapods following the teleost-tetrapod divergence. We posit a specific expansion of the Nav channel gene family in the Devonian and Carboniferous periods when tetrapods evolved, diversified, and invaded the terrestrial habitat. During this time the amniote forebrain evolved greater anatomical complexity and novel tactile sensory receptors appeared. The duplication of Nav channel genes allowed for greater regional specialization in Nav channel expression, variation in sub-cellular localization, and enhanced processing of somatosensory input.This work was funded by the National Science Foundation (IBN 0236147 to H.H.Z and M.C.J), and the National Institutes of Health (R01GM084879 to H.H.Z)

    Gene duplications and evolution of vertebrate voltage-gated sodium channels

    Get PDF
    Author Posting. © The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Journal of Molecular Evolution 63 (2006): 208-221, doi:10.1007/s00239-005-0287-9.Voltage-gated sodium channels underlie action potential generation in excitable tissue. To establish the evolutionary mechanisms that shaped the vertebrate sodium channel a-subunit (SCNA) gene family and their encoded Nav1 proteins, we identified all SCNA genes in several teleost species. Molecular cloning revealed that teleosts have eight SCNA genes, comparable to the number in another vertebrate lineage, mammals. Prior phylogenetic analyses had indicated that teleosts and tetrapods share four monophyletic groups of SCNA genes and that tandem duplications selectively expanded the number of genes in two of the four mammalian groups. However, the number of genes in each group varies between teleosts and tetrapods suggesting different evolutionary histories in the two vertebrate lineages. Our findings from phylogenetic analysis and chromosomal mapping of Danio rerio genes indicate that tandem duplications are an unlikely mechanism for generation of the extant teleost SCNA genes. Instead, analysis of other closely mapped genes in D. rerio supports the hypothesis that a whole genome duplication was involved in expansion of the SCNA gene family in teleosts. Interestingly, despite their different evolutionary histories, mRNA analyses demonstrated a conservation of expression patterns for SCNA orthologues in teleosts and tetrapods, suggesting functional conservation.The authors’ work was supported by NIH grants (NS 38937; AEN, ADT and ABR, NS 25513; HHZ and YL and NSF IBN 0236147; MCJ)

    Emerging from the bottleneck: benefits of the comparative approach to modern neuroscience

    No full text
    Neuroscience has historically exploited a wide diversity of animal taxa. Recently, however, research has focused increasingly on a few model species. This trend has accelerated with the genetic revolution, as genomic sequences and genetic tools became available for a few species, which formed a bottleneck. This coalescence on a small set of model species comes with several costs that are often not considered, especially in the current drive to use mice explicitly as models for human diseases. Comparative studies of strategically chosen non-model species can complement model species research and yield more rigorous studies. As genetic sequences and tools become available for many more species, we are poised to emerge from the bottleneck and once again exploit the rich biological diversity offered by comparative studies. Biological diversity as a resource for neuroscience Model species such as the fruit fly (Drosophila melanogaster), the nematode 'worm' (Caenorhabditis. elegans), zebrafish (Danio rerio), the rat (Rattus rattus), and, most predominantly, the mouse (Mus musculus) have played an important role in biology. A given species may offer particular advantages for the study of a biological process, such as rapid embryonic development, accessible nervous systems, or ease of maintenance in the laboratory. The advantages of model species have become more pronounced with the advent of the genomic revolution. Until recently, sequencing genomes was expensive and laborious, limiting the number of species for which genomic sequences were available. As the database of information for a given model species grows over time, there is an increasing incentive to use that species to investigate topics outside the narrow field of inquiry for which the species was initially chosen. 'Repurposing' of model species, however, can raise concerns -as seen in the ongoing debate about the value of inbred mouse (M. musculus) strains as models for understanding human mental disorders Potential limitations of the model species approach Over the past 20 years or so, neuroscience and much of biology in general has coalesced from the traditional embrace of diverse species down to a small number of model species. There are various practical reasons for this process of concentration. Model species tend to be readily available, easily maintained in captivity, and are feasible to breed in large numbers. As a species becomes a wellestablished model for a research community, there is an exponential growth in the amount of available information that serves as a platform for future research. With the advent of the genomic revolution, and the ensuing development of powerful molecular tools such as combinatorial systems for gene expression and optogenetics, the incentive to concentrate on a small number of species has become even more pronounced. Conservation of orthologous genes across diverse taxa shows that we can understand much about basic genomic structure and function by studying model species. The current enthusiasm for a model species approach, however, brings with it several limitations that are too rarely acknowledged. The standard model species represent a vanishingly small percentage of the total biological diversity. As Manger et al

    Vocal and Electric Fish: Revisiting a Comparison of Two Teleost Models in the Neuroethology of Social Behavior

    Get PDF
    The communication behaviors of vocal fish and electric fish are among the vertebrate social behaviors best understood at the level of neural circuits. Both forms of signaling rely on midbrain inputs to hindbrain pattern generators that activate peripheral effectors (sonic muscles and electrocytes) to produce pulsatile signals that are modulated by frequency/repetition rate, amplitude and call duration. To generate signals that vary by sex, male phenotype, and social context, these circuits are responsive to a wide range of hormones and neuromodulators acting on different timescales at multiple loci. Bass and Zakon (2005) reviewed the behavioral neuroendocrinology of these two teleost groups, comparing how the regulation of their communication systems have both converged and diverged during their parallel evolution. Here, we revisit this comparison and review the complementary developments over the past 16 years. We (a) summarize recent work that expands our knowledge of the neural circuits underlying these two communication systems, (b) review parallel studies on the action of neuromodulators (e.g., serotonin, AVT, melatonin), brain steroidogenesis (via aromatase), and social stimuli on the output of these circuits, (c) highlight recent transcriptomic studies that illustrate how contemporary molecular methods have elucidated the genetic regulation of social behavior in these fish, and (d) describe recent studies of mochokid catfish, which use both vocal and electric communication, and that use both vocal and electric communication and consider how these two systems are spliced together in the same species. Finally, we offer avenues for future research to further probe how similarities and differences between these two communication systems emerge over ontogeny and evolution

    Supplemental_Data.tar

    No full text
    This archive contains datasets used for the analyses in the paper and several stability analyses conducted to verify the results. Motivations for these can be found in the supplemental material of the paper
    • …
    corecore