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Abstract

The alpha subunits of voltage-gated calcium channels (Cavs) are large transmembrane proteins responsible for crucial physiological

processes in excitable cells. They are assisted by three auxiliary subunits that can modulate their electrical behavior. Little is known

about the evolution and roles of the various subunits of Cavs in nonbilaterian animals and in nonanimal lineages. For this reason, we

mapped the phyletic distribution of the four channel subunits and reconstructed their phylogeny. Althoughalpha subunits have deep

evolutionary roots as ancient as the split between plants and opistokonths, beta subunits appeared in the last common ancestor of

animals and their close-relatives choanoflagellates, gamma subunits are a bilaterian novelty and alpha2/delta subunits appeared in

the lineage of Placozoa, Cnidaria, and Bilateria. We note that gene losses were extremely common in the evolution of Cavs, with

noticeable losses in multiple clades of subfamilies and also of whole Cav families. As in vertebrates, but not protostomes, Cav channel

genes duplicated in Cnidaria. We characterized by in situ hybridization the tissue distribution of alpha subunits in the sea anemone

Nematostella vectensis, a nonbilaterian animal possessing all three Cav subfamilies common to Bilateria. We find that some of the

alpha subunit subtypes exhibit distinct spatiotemporal expression patterns. Further, all six sea anemone alpha subunit subtypes are

conserved in stony corals, which separated from anemones 500 MA. This unexpected conservation together with the expression

patterns strongly supports the notion that these subtypes carry unique functional roles.

Key words: voltage-gated calcium channel, ion channel, Cnidaria, Nematostella vectensis, evolution of nervous system.

Introduction

Voltage-gated Ca2+ channels (Cav) play a fundamental role in

synaptic transmission and muscle contraction in Bilateria, a

group which comprise the vast majority of animal species

(Catterall et al. 2005; Tyson and Snutch 2013; Simms and

Zamponi 2014). Although much is known about the physio-

logical roles of these channels in Bilateria, little is known about

their function or their tissue distribution in nonbilaterian ani-

mals. Among these limited data, there are indications for Cav

playing a role in neuronal and muscular function in cnidarians

such as sea anemones and jellyfish (Anderson 1987; Holman

and Anderson 1991; Jeziorski et al. 1998). Strong

phylogenetic support places the Cnidaria as sister to the

Bilateria (Erwin et al. 2011; Ryan et al. 2013), suggesting

that they share a common ancestor, which possessed muscles

and a nervous system. Nevertheless, recent surprising findings

emphasize the independent evolution of striated muscle

(Steinmetz et al. 2012) and Na+-permeable voltage-

gated channels (Gur Barzilai et al. 2012) in Cnidaria and

Bilateria. Better understanding of these features in Cnidaria

may help us grasp the complexity of the nervous and muscular

systems of ancient animals that lived more than half a billion

years ago.

In bilaterians, the pore-forming a subunits of Cavs (a1),

which are responsible for conducting the Ca2+ ions (fig. 1),
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are divided into two broad groups based on physiology:

Low-voltage-activated (LVA) channels that open near resting

potential and high-voltage-activated (HVA) channels that

require a sizable depolarization to open (Catterall et al.

2005). The LVA channels are also termed T type or Cav3.

The HVA group is further subdivided by their biophysical

and pharmacological properties into L type (Cav1) and a

third category of N, P/Q, and R types (Cav2). Two major

protostome groups, the Ecdysozoa and Lophotrochozoa,

possess three Cavs, one each from the Cav1–3 groups

(Liebeskind et al. 2011; Cai and Clapham 2012), whereas

vertebrates have ten Cav channels resulting from the two

rounds of genome duplications that expanded the repertoire

of many vertebrate genes (Jegla et al. 2009). In contrast to our

understanding of Cav evolution in Bilateria, we still lack much

knowledge regarding the evolution of these channels in

nonbilaterian and nonanimal phyla. We know from recent

studies that a subunits of Cavs can be found in the represen-

tatives of early-branching groups as choanoflagellates and

algae and that they are distantly related to calcium channels

of fungi (Verret et al. 2010; Liebeskind et al. 2012), yet we do

not know much about the evolution of the Cav1, 2, and 3

subfamilies. Furthermore, bilaterian Cavs contain auxiliary

subunits (a2d, b, and g; fig. 1), and the phyletic distribution

and evolutionary history of the gene families encoding them

are unknown. To address these gaps in knowledge, we

analyzed in this work the phyletic distribution of the various

Cav subunits and reconstructed their phylogenies.

Additionally, we used the sea anemone Nematostella vectensis

to study Cav spatiotemporal expression patterns to better

understand the functionality of these channels in nonbilater-

ian organisms.

Materials and Methods

Identification of Cav Homologs and Phylogenetic Analysis

Putative Cav homologs were detected in GenBank (nr), Broad

Institute and Joint Genome Institute databases through

BLAST. Transcript clusters were translated to proteins.

Accession numbers of proteins used in all phylogenetic

analyses can be found in supplementary table S1,

Supplementary Material online. Protein models were aligned

using MUSCLE and low-quality alignment regions were re-

moved by TrimAl (Edgar 2004; Capella-Gutierrez et al.

2009). ProtTest was used to find the most suitable model

for phylogeny reconstruction (Abascal et al. 2005) and this

model was used to reconstruct a maximum-likelihood tree

with PhyML (Guindon et al. 2010). Support values were cal-

culated using 100 bootstrap replicates. A Bayesian tree was

constructed using MrBayes version 3.1.2 with the same

model. The run lasted 5,000,000 generations and every

100th generation was sampled. We estimated that the

Bayesian analysis reached convergence when the potential

scale reduction factor reached 1.0.

RNA Isolation and Polymerase Chain Reaction
Amplification of Cav Transcript Fragments from
N. vectensis

Total RNA was isolated from planulae (4 days old) and adult

polyps (>5 months old) of N. vectensis using Trizol (Life

Technologies, USA) according to the manufacturer’s instruc-

tions. The purified RNA was used as a template for reverse

transcription reaction using the SuperScript III reverse tran-

scriptase (Life Technologies) and random primers (New

FIG. 1.—Schematic representation of a Cav channel (a1) with its three auxiliary (b, a2/d, g) subunits. The a1 subunit forms a voltage-gated calcium-

permeating channel that functions alone. The trafficking of the a1 subunit and its biophysical properties are influenced by the other subunits. The a2 and d
subunits are distinct proteins made from a common precursor protein and linked through a disulfide bond. The b subunit is intracellular whereas the others

are transmembrane proteins. On the right is a table of the three a1 Cav channel types. Figure adapted from Khosravani and Zamponi (2006) Voltage-Gated

Calcium Channels and Idiopathic Generalized Epilepsies. Physiological Reviews, volume 86, issue 3, p. 945 by permission of the American Physiological

Society.
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England Biolabs, USA) according to manufacturer instructions.

Advantage2 DNA polymerase mix (Clontech) was used for

polymerase chain reaction (PCR) under high-stringency condi-

tions: 94 �C for 2:00 min, 35� (94 �C for 20 s, 65 �C for 20 s,

72 �C for 1 min) and 72 �C for 5 min. The amplified fragments

were 1–1.5 kb long (for primer list, see supplementary table

S2, Supplementary Material online) and they were purified

using Illustra PCR purification kit (GE Healthcare, UK) and li-

gated into pGEM-T (Promega). The resulting plasmids were

sequenced from both ends (performed at MicroSynth,

Switzerland) and were used as templates for producing RNA

probes for in situ hybridization (ISH).

In Situ Hybridization

For ISH experiments, N. vectensis larvae were fixed at 48–

168 h postfertilization in ice-cold 3.7% formaldehyde in

one-third of seawater with 0.2% glutaraldehyde for 90 s

and then in 3.7% formaldehyde in one-third of seawater

without glutaraldehyde for additional 60 min. Antisense

RNA probes for ISH were generated and labeled by using

the T7 or SP6 MEGAscript kits (Life Technologies) and an

RNA labeling mix with digoxygenin (Roche, Germany). The

ISH procedure was performed as described previously

(Genikhovich and Technau 2009). The stained samples were

photographed in a Nikon Eclipse 80i microscope with differ-

ential interference contrast optics connected to a Nikon Digital

Sight DS-U2 camera.

Results

Distribution and Evolution of a1 Subunits of Cav

Channels

We collected from publicly available genomic and transcrip-

tomic databases (see Methods and Materials) the putative

protein sequences of bilaterian, cnidarians, placozoan

(Trichoplax), poriferan (sponges), and ctenophore (comb jel-

lies) Cav a subunits. In addition, we searched for such homo-

logs in all available data from nonanimal groups. We

reconstructed a phylogeny of these proteins, which included

only complete models (all four channel domains present) to

increase its accuracy (fig. 2). The earliest branching group

where we could find homologs of Cav a1 subunits was

green algae, such as Chlamydomonas and Micromonas; how-

ever, as their sequences are highly derived and as they also

include some characteristics of Nav channels (Verret et al.

2010; Liebeskind et al. 2012) we did not include them in

our phylogenetic analysis. Another organism where we

found Cav a1 subunit homologs is Thecamonas trahens, a

member of the Apusozoa, which according to recent phylog-

eny is a sister group to all opisthokonts (fungi, animals, and

their close protozoan relatives) (Derelle and Lang 2012).

However, our phylogeny indicates that both complete

Thecamonas protein models are clustered with a subunits of

voltage-gated sodium channels (Nav1) and their close homo-

logs (Nav2) rather than with Cavs. The next group we could

find Cav homologs in was Choanoflagellata, a protist sister

group of animals: The genome of the choanoflagellate

Salpingoeca rosetta (Fairclough et al. 2013) contains two a-

subunit homologs, with one of them clustering with HVA

channels and the other with LVA channels (fig. 2). In the

genome of another choanoflagellate, Monosiga brevicollis

(King et al. 2008), we could detect only a short gene fragment

encoding a partial Cav of only 258 amino acids, suggesting

either a partial gene deletion or a technical problem in

genome assembly at this specific region (data not shown).

We found an HVA homolog in the genome of the sponge

Amphimedon queenslandica (Srivastava et al. 2010) and a

homolog of Cav2 in the genome of the ctenophore

Mnemiopsis leidyi (Ryan et al. 2013). In cnidarians and the

placozoan Trichoplax adhaerens (Srivastava et al. 2008), we

found representatives of all three Cav a1 subunit families.

In the genome of N. vectensis (Putnam et al. 2007), we

identified one Cav1 gene, three Cav2 genes, and two Cav3

genes. Interestingly, in the transcriptomic data available for

the stony coral Acropora millepora (Meyer et al. 2009; Moya

et al. 2012) we identified partial transcript models which dem-

onstrate clear orthologous relationships with each of the Cav

genes of N. vectensis (fig. 3). Taking into account the

Acropora and Nematostella approximate separation time

(Shinzato et al. 2011), it is likely that these orthologs are con-

served in both lineages for about 500 Myr. Thus, similar to

vertebrates, but not protostomes, Cav channel genes dupli-

cated in Cnidaria.

Localization of the transcripts of the six Cav a1 subunits of

Nematostella by ISH demonstrated complex spatiotemporal

expression patterns. Cav1a expression starts only from the

mid-planula stage, where it is diffused in the endoderm.

Later in the late-planula and primary polyp stages the expres-

sion becomes concentrated in regions along the mesenteries

and in the endoderm and ectoderm of the tentacle buds,

regions which also include muscles and neurons (Marlow

et al. 2009; Renfer et al. 2010; fig. 4). In contrast, Cav2a is

expressed already from the early planula stage and is specific

to nematocytes, the stinging cells which typify Cnidaria (Kass-

Simon and Scappaticci 2002; Zenkert et al. 2011). This is

clearly evident by the stain-free nematocyst (stinging capsule)

structure which is surrounded by stained cytoplasm (fig. 4 and

supplementary fig. S1, Supplementary Material online).

Cav2b, Cav2c, and the two Cav3 genes of Nematostella also

exhibit distinct developmental expression patterns (fig. 4), but

it is more difficult to postulate on their identity.

Distribution and Evolution of Auxiliary Subunits of Cav

Channels

As with the study of a1 subunits, we collected putative protein

homologs of the a2d, b, and g subunits of Cav channels from

Moran and Zakon GBE
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transcriptomic and genomic databases and reconstructed

their phylogenies. We could not find a2d homologs in sponges

and ctenophores or in any nonanimal group. We detected

single a2d genes in Trichoplax, Acropora, and Nematostella.

In the cnidarian Hydra magnipapillata there are three a2d
genes, suggesting a lineage-specific expansion (fig. 5). We

rooted the phylogenetic tree of the a2d subunits by using

the clade of human cache domain containing 1 protein

(VWFAC1) and its cnidarian homologs as an outgroup. The

VWFAC1 proteins are similar in sequence (~40% similarity) to

a2d subunits and seem to be highly conserved in most ani-

mals, including cnidarians, arthropods, and vertebrates.

However, to the best of our knowledge, the function of

these proteins in bilaterians is currently unknown.

Unlike a2d subunits which seem to be metazoan-specific, b
subunits can be found in choanoflagellates (fig. 6). We also

detected a single b subunit in each cnidarian species and in

Trichoplax. This suggests that b subunits appeared in the

common ancestor of choanoflagellates and animals but

were lost independently in sponges and ctenophores.

We could not detect any g subunits in nonvertebrate spe-

cies but a single homolog in the hemichordate Saccoglossus

kowalevskii and a single homolog in each of the two annelids,

Capitella teleta and Helobdella robusta (supplementary table

S1, Supplementary Material online). These protein models

show only modest similarity to g subunits of vertebrates (41–

46% similarity) but contain a typical claudin-2 domain and

have a similar length to their vertebrate homologs (250–300

amino acids). Moreover, when we used them for a reciprocal

BLAST query against the human proteome, the best scoring

hits were g subunits of Cav, suggesting that these might be

true homologs. The extremely patchy phyletic distribution of g
subunits strongly suggests that they were lost independently in

multiple lineages. However, there are some indications that

other proteins with claudin domains can also influence the

expression levels and function of Cav channels in invertebrates

FIG. 2.— Phylogeny of Cav a1 subunits. A maximum-likelihood phylogenetic tree was constructed with the LG model (+G, +F). Bootstrap support values

above 50% are indicated above branches. Posterior probability (PP) values of a Bayesian tree constructed with the WAG model are indicated by a green

(PP= 1.0), or purple (0.95� PP< 1.0) asterisk. Abbreviations of species names are: Aqu, Amphimedon queenslandica (sponge); Ami, Acropora millepora

(stony coral); Cel, Caenorhabditis elegans (nematode); Cin, Ciona intestinalis (tunicate); Cca, Cyanea capillata (jellyfish); Dme, Drosophila melanogaster (fruit

fly); Hsa, Homo sapiens (human); Hma, Hydra magnipapillata (hydra); Lst, Lymnaea stagnalis (pond snail); Mle, Mnemiopsis leidyi (comb jelly); Nve,

Nematostella vectensis (starlet anemone); Spi, Stylophora pistillata (stony coral); Sro, Salpingoeca rosetta (choanoflagellate); Tad, Trichoplax adhaerens

(placozoan); Tps, Thalassiosira pseudonana (diatom); Ttr, Thecamonas trahens.
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(Simske 2013) and it is possible that high sequence variability

of such subunits is masking common ancestral origins.

Discussion

The current work of mapping the phyletic distribution of the

four subunits of Cav channels and the analysis of their phy-

logeny together with results of previous research (Verret et al.

2010; Liebeskind et al. 2011; Gur Barzilai et al. 2012;

Liebeskind et al. 2012) allows us to reconstruct their evolu-

tionary history. It seems that the first a1 subunits of Cavs ap-

peared very early in eukaryote evolution, already in the

common ancestor of Viridiplantae (plants and green algae),

Apusozoa, and Opisthokonta. However, it was lost in multiple

lineages, such as all extant land plants, Amoebozoa and fungi.

The finding of HVA and LVA Cav channels in S. rosetta indi-

cates that these Cav subfamilies already separated in the an-

cestor of choanoflagellates and animals. Intriguingly,

choanoflagellates possess a primordial neurosecretory appa-

ratus (Burkhardt et al. 2011) and we hypothesize that Cav

channels may play a role in its function. When HVA channels

further diverged to Cav1 and Cav2 is harder to determine, as

the order of divergence of sponges and ctenophores is still

under debate (Philippe et al. 2011; Ryan et al. 2013). Our

phylogeny indicates that the single Cav of the sponge A.

queenslandica is a sister clade to all other animal a1 subunits

of HVA channels, whereas the single a1 subunit of the cteno-

phore M. leidyi clusters with the Cav2 subfamily. This suggests

that possibly Cav2-like characteristics already appeared in the

ancient HVA Cavs prior to the divergence of ctenophores.

Alternatively, the divergence of Cav1 and Cav2 might have

happened before the divergence of ctenophores from the

rest of the animals, and the lineage of M. leidyi lost Cav1.

Gene loss is a general trend in the evolution of Cavs, as

both sponges and ctenophores seem to have independently

lost the Cav3 subfamily (fig. 2). Such losses of channel genes in

animal lineages may be suspected as artifacts due to technical

FIG. 4.—The spatiotemporal expression of the Cav a subunits subtype

from Nematostella vectensis as determined by ISH. Gene expression is

indicated by blue staining. The insets show the expression of Cav2a in

nematocytes (stinging cells). In all pictures (not including insets), the oral

end of all larvae is to the left. Abbreviations of developmental stages are:

EP, early planula; MP, mid-planula; LP, late planula (tentacle buds are no-

ticeable); and PP, primary polyp.

FIG. 3.— Phylogeny of Cav a1 subunit subtypes from Nematostella

vectensis and Acropora millepora. Sequences from these two species

appear in red bold. A maximum likelihood phylogenetic tree was con-

structed with the LG model (+I, +G, +F). Bootstrap support values above

50% are indicated above branches. Posterior probability (PP) values of a

Bayesian tree constructed with the WAG model are indicated by a green

(PP= 1.0), purple (0.95� PP< 1.0), or red (0.9� PP<0.95) asterisk.

Abbreviations of species names are: Ami, Acropora millepora (stony

coral); Cca, Cyanea capillata (jellyfish); Dme, Drosophila melanogaster

(fruit fly); Hsa, Homo sapiens (human); Hma, Hydra magnipapillata

(hydra); Nve, Nematostella vectensis (starlet anemone); Spi, Stylophora

pistillata (stony coral).
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reasons, such as errors in gene annotation, genome assembly,

and/or insufficient sequencing depth. However, it is notewor-

thy that the sequencing depth of the genomes of

Amphimedon (9-fold by Sanger sequencing; Srivastava et al.

2010) and Mnemiopsis (12-fold coverage by 454 sequencing;

Ryan et al. 2013) is more than adequate. Moreover, our

searches in the recently sequenced genomes of the cteno-

phore Pleurobrachia bachei (Moroz et al. 2014) and the

sponge Oscarella carmela (available through the Compagen

website; Hemmrich and Bosch 2008) supported the above

scenario in which Cav3 subfamily and b subunits were lost

in sponges and ctenophores.

An intriguing question is what might be the functional

value of Cav channels in light of the fact that Nav2 channels

are also voltage-gated channels conducting mostly calcium

ions (Zhou et al. 2004; Gur Barzilai et al. 2012). The answer

to this question might lie in the vastly different voltage-sensi-

tivities of Nav2 and HVA Cav channels, as the latter opens only

in relatively high voltages and therefore are not well-suited for

conducting neuronal action potentials (Tyson and Snutch

2013; Simms and Zamponi 2014).

Our analyses suggest that auxiliary subunits were gradually

added during evolution to the Cav complex: b subunits ap-

peared already in the ancestor of choanoflagellates and

animals, a2d appeared only later in the common ancestor of

placozoans, cnidarians and bilaterians, whereas g subunits

might have appeared only in the bilaterian lineage. As auxiliary

subunits can increase the complexity of electrical signaling

(Lacerda et al. 1991; Obermair et al. 2005; Dolphin 2012),

this trend at the genetic level could support increasing com-

plexity at the neuronal level. However, we also notice that all

subunits other than a2d were lost in some lineages, demon-

strating a highly plastic evolution of the Cav complex.

Our finding by using ISH techniques that each Cavs a1

subunit of Nematostella occupies a distinct spatiotemporal ex-

pression domain (fig. 4) raises the possibility that each of these

subunits has acquired a specialized role. The expression of

Cav1a in muscles and/or motor neurons is in accordance

with previous works that recorded L-type calcium currents in

the muscles of sea anemones and isolated transcripts encod-

ing Cav1 from motor neuron-rich regions of a jellyfish bell

(Holman and Anderson 1991; Jeziorski et al. 1998). The ex-

pression of Nematostella Cav2a in nematocytes fits a previous

report on the isolation of transcripts encoding Cav channels

from the stinging cells of the cnidarian Physalia physalis

FIG. 6.—Phylogeny of Cav b subunits. A maximum-likelihood phylo-

genetic tree was constructed with the LG model (+G). Bootstrap support

values above 50% are indicated above branches. Posterior probability (PP)

values of a Bayesian tree constructed with the WAG model are indicated

by a green (PP= 1.0), purple (0.95� PP< 1.0), or red (0.9� PP< 0.95)

asterisk. Abbreviations of species names are: Ami, Acropora millepora

(stony coral); Cel, Caenorhabditis elegans (nematode); Cin, Ciona intesti-

nalis (tunicate); Cca, Cyanea capillata (jellyfish); Cte, Capitella teleta (anne-

lid worm); Dme, Drosophila melanogaster (fruit fly); Hsa, Homo sapiens

(human); Hma, Hydra magnipapillata (hydra); Lst, Lymnaea stagnalis (pond

snail); Mbr, Monosiga brevicollis (choanoflagellate); Nve, Nematostella vec-

tensis (starlet anemone); Pph, Physalia physalis (hydrozoan cnidarian); Sro,

Salpingoeca rosetta (choanoflagellate); Tad, Trichoplax adhaerens

(placozoan).

FIG. 5.—Phylogeny of Cav a2d subunits. A maximum-likelihood phy-

logenetic tree was constructed with the LG model (+I, +G, +F). Bootstrap

support values above 50% are indicated above branches. Posterior prob-

ability (PP) values of a Bayesian tree constructed with the WAG model are

indicated by a green (PP = 1.0), purple (0.95� PP< 1.0), or red

(0.9� PP< 0.95) asterisk. Abbreviations of species names are: Ami,

Acropora millepora (stony coral); Cel, Caenorhabditis elegans (nematode);

Cin, Ciona intestinalis (tunicate); Cte, Capitella teleta (annelid worm); Dme,

Drosophila melanogaster (fruit fly); Hsa, Homo sapiens (human); Hma,

Hydra magnipapillata (hydra); Lgi, Lottia gigantea (owl limpet); Nve,

Nematostella vectensis (starlet anemone); Tad, Trichoplax adhaerens

(placozoan).

Evolution in the Cavs GBE

Genome Biol. Evol. 6(9):2210–2217. doi:10.1093/gbe/evu177 Advance Access publication August 21, 2014 2215

 at M
B

L
W

H
O

I L
ibrary on O

ctober 1, 2014
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

n
are 
via 
in situ hybridization
http://gbe.oxfordjournals.org/


(Bouchard et al. 2006) and reports of Cav-dependence of

nematocyst action (Gitter et al. 1994; Watson and Hessinger

1994). The notion of specialization of cnidarian Cavs a1 sub-

units is also strongly supported by our finding that the six Cav

a subunit subtypes are highly conserved for about 500 Myr in

the lineage of sea anemone and reef-building corals (fig. 3).

The expansion and specialization of Cav a subunits is part of a

wider trend that seems to be true also for other ion channel

families in Cnidaria, such as voltage-gated potassium channels

(Jegla et al. 2012; Martinson et al. 2014) and Nav2 channels

(Gur Barzilai et al. 2012).

Supplementary Material

Supplementary figure S1 and tables S1 and S2 are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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