255 research outputs found

    Giant spin-dependent photo-conductivity in GaAsN dilute nitride semiconductor

    Full text link
    A theoretical and experimental study of the spin-dependent photoconductivity in dilute Nitride GaAsN is presented. The non linear transport model we develop here is based on the rate equations for electrons, holes, deep paramagnetic and non paramagnetic centers both under CW and pulsed optical excitation. Emphasis is given to the effect of the competition between paramagnetic centers and non paramagnetic centers which allows us to reproduce the measured characteristics of the spin-dependent recombination power dependence. Particular attention is paid to the role of an external magnetic field in Voigt geometry. The photoconductivity exhibits a Hanle-type curve whereas the spin polarization of electrons shows two superimposed Lorentzian curves with different widths, respectively related to the recombination of free and trapped electrons. The model is capable of reproducing qualitatively and quantitatively the most important features of photoluminescence and photocurrent experiments and is helpful in providing insight on the various mechanisms involved in the electron spin polarization and filtering in GaAsN semiconductors.Comment: 10 pages, 5 figure

    Room temperature Giant Spin-dependent Photoconductivity in dilute nitride semiconductors

    Full text link
    By combining optical spin injection techniques with transport spectroscopy tools, we demonstrate a spin-photodetector allowing for the electrical measurement and active filtering of conduction band electron spin at room temperature in a non-magnetic GaAsN semiconductor structure. By switching the polarization of the incident light from linear to circular, we observe a Giant Spin-dependent Photoconductivity (GSP) reaching up to 40 % without the need of an external magnetic field. We show that the GSP is due to a very efficient spin filtering effect of conduction band electrons on Nitrogen-induced Ga self-interstitial deep paramagnetic centers.Comment: 4 pages, 3 figure

    Chinas Going Global – Finanzmarktkrise bietet Chancen fĂŒr chinesische Investoren im Ausland

    Get PDF
    We study the effect of nitrogen on the GaAs0.9-xNxSb0.1 (x = 0.00, 0.65%, 1.06%, 1.45%, and 1.90%) alloy dielectric function by spectroscopic ellipsometry in the energy range from 0.73 to 4.75 eV. The compositional dependences of the critical points energies for the GaAs0.9-xNxSb0.1 are obtained. In addition to the GaAs intrinsic transitions E-1, E-1+ Delta(1), and E-0, the nitrogen-induced Gamma-point optical transitions E-0 and E+, together with a third transition E-#, are identified. We find that with increasing the N content, the E-0 transition shifts to lower energies while the E+ and (E)# transitions shift to higher energies. We suggest that the origin of the E-0, E+, and E-# transitions may be explained by the double band anticrossing (BAC) model, consisting of a conduction BAC model and a valence BAC model.Original Publication:N. Ben Sedrine, C. Bouhafs, J.C. Harmand, R. Chtourou and Vanya Darakchieva, Effect of nitrogen on the GaAs0.9-xNxSb0.1 dielectric function from the near-infrared to the ultraviolet, 2010, Applied Physics Letters, (97), 20, 201903.http://dx.doi.org/10.1063/1.3518479Copyright: American Institute of Physicshttp://www.aip.org

    Grand Challenges of Evolutionary Psychology

    Get PDF
    In this paper we present our recent developments in control and manipulation of individual spins and photons in a single nanowire quantum dot. Specific examples include demonstration of optical excitation of single spin states, charge tunable quantum devices and single photon sources. We will also discuss our recent discovery of a new type of charge confinement - crystal phase quantum dots. They are formed from the same material with different crystal structure, and today can only be realized in nanowires

    Growth of Inclined GaAs Nanowires by Molecular Beam Epitaxy: Theory and Experiment

    Get PDF
    The growth of inclined GaAs nanowires (NWs) during molecular beam epitaxy (MBE) on the rotating substrates is studied. The growth model provides explicitly the NW length as a function of radius, supersaturations, diffusion lengths and the tilt angle. Growth experiments are carried out on the GaAs(211)A and GaAs(111)B substrates. It is found that 20° inclined NWs are two times longer in average, which is explained by a larger impingement rate on their sidewalls. We find that the effective diffusion length at 550°C amounts to 12 nm for the surface adatoms and is more than 5,000 nm for the sidewall adatoms. Supersaturations of surface and sidewall adatoms are also estimated. The obtained results show the importance of sidewall adatoms in the MBE growth of NWs, neglected in a number of earlier studies

    Contrasting crystal packing arrangements in triiodide salts of radical cations of chiral bis(pyrrolo[3,4-d])tetrathiafulvalenes

    Get PDF
    Crystal structures of six 1 : 1 triiodide salts of a series of enantiopure bis(pyrrolo[3,4-d])TTF derivatives, the first structures of radical cation salts reported for this bis(pyrrolo) donor system, show three different arrangements of triiodide ions, organised either in head-to-tail pairs, in infinite lines, or in a castellated arrangement. The complex crystal structures, obtained by electrocrystallisation, are influenced by the presence of solvent, for example changing an ABCABC packing arrangement to ABAB with inclusion of THF, as well as by the size of the chiral side chain

    Prediction-Based Control of Linear Systems by Compensating Input-Dependent Input Delay of Integral-Type

    No full text
    International audienceThis study addresses the problem of delay compensation via a predictor-based output feedback for a class of linear systems subject to input delay which itself depends on the input. The equation defining the delay is implicit and involves past values of the input through an integral relation, the kernel of which is a polynomial function of the input. This modeling represents systems where transport phenomena take place at the inlet of a system involving a nonlinearity, which frequently occurs in the processing industry. The conditions of asymptotic stabilization require the magnitude of the feedback gain to comply with the initial conditions. Arguments for the proof of this novel result include general Halanay inequalities for delay differential equations and take advantage of recent advances in backstepping techniques for uncertain or varying delay systems

    Lichenological exploration of Algeria: historical overview and annotated bibliography, 1799-2013

    Get PDF
    yesDespite more than two centuries of almost uninterrupted surveys and studies of Algerian lichenology, the history and lichen diversity of Algeria are still poorly understood. During the preparation of a forthcoming checklist of Algerian lichens it was considered necessary to provide the present historical overview of lichenological exploration of the country from 1799 to 2013, supported by a reasonably comprehensive annotated bibliography of 171 titles

    Nanometer-scale characterization of laser-driven compression, shocks, and phase transitions, by x-ray scattering using free electron lasers

    Get PDF
    We study the feasibility of using small angle X-ray scattering (SAXS) as a new experimental diagnostic for intense laser-solid interactions. By using X-ray pulses from a hard X-ray free electron laser, we can simultaneously achieve nanometer and femtosecond resolution of laser-driven samples. This is an important new capability for the Helmholtz international beamline for extreme fields at the high energy density endstation currently built at the European X-ray free electron laser. We review the relevant SAXS theory and its application to transient processes in solid density plasmas and report on first experimental results that confirm the feasibility of the method. We present results of two test experiments where the first experiment employs ultra-short laser pulses for studying relativistic laser plasma interactions, and the second one focuses on shock compression studies with a nanosecond laser system
    • 

    corecore