97 research outputs found

    Discovery of metal line emission from the Red star in IP Peg during outburst maximum

    Get PDF
    Observations of the eclipsing dwarf nova IP Peg during outburst reveal metal lines in emission, such as Mg II 4481 A. Analysis using Doppler tomography locates emission of helium and metal lines on the inner Roche lobe of the secondary star. Such multi-line Roche-lobe imaging presents a new tool in mapping the red star's ionization structure.Comment: 3 pages, 3 figures, accepted for publication as a Letter in A&A (May 1999

    Spiral shocks in the accretion disc of IP Peg during outburst maximum

    Get PDF
    In response to our recent discovery of spiral arms in the accretion disc of IP Peg during rise to outburst, we have obtained time-resolved spectrophotometry of IP Peg during outburst maximum. In particular, indirect imaging of HeII 4686, using Doppler tomography, shows a two-arm spiral pattern on the disc image, which confirms repeatability over different outbursts. The jump in HeII intensity (a factor of more than two) and in velocity (~200--300 km/s) clarifies the shock nature of the spiral structure. The HeII shocks show an azimuthal extent of ~90 degrees, a shallow power-law emissivity ~V^{-1}, an upper limit of 30 degrees in opening angle, and a flux contribution of 15 per cent of the total disc emission. We discuss the results in view of recent simulations of accretion discs which show that spiral shocks can be raised in the accretion disc by the secondary star.Comment: 5 pages, 4 figures, MNRAS journal paper. in pres

    Tracing the spiral arms in IP Pegasi

    Get PDF
    We report the analysis of time-resolved spectroscopy of IP Pegasi in outburst with eclipse mapping techniques to investigate the location and geometry of the observed spiral structures. We were able to obtain an improved view of the spiral structures with the aid of light curves extracted in velocity bins matching the observed range of velocities of the spiral arms combined with a double default map tailored for reconstruction of asymmetric structures. Two-armed spiral structures are clearly seen in all eclipse maps. The arms are located at different distances from the disc centre. The “blue” arm is farther out in the disc (R = 0.55 ± 0.05 R L1 ) than the “red” arm (R = 0.30 ± 0.05 R L1 ). There is evidence that the velocity of the emitting gas along the spiral pattern is lower than the Keplerian velocity for the same disc radius. The discrepancy is smaller in the outer arm (measured velocities 10–15 per cent lower than Keplerian) and is more significant in the inner arm (observed velocities up to 40 per cent lower than Keplerian). We measured the opening angle of the spirals from the azimuthal intensity distribution of the eclipse maps to be φ = 25◦ ± 3◦ . A comparison with similar measurements on data at different outburst stages reveals that the opening angle of the spiral arms in IP Peg decreases while the outbursting accretion disc cools and shrinks, in agreement with the expected evolution of a tidally driven spiral wave. The sub-Keplerian velocities along the spiral pattern and the clear correlation between the opening angle of the spirals and the outburst stage favors the interpretation of these asymmetric structures as tidally-induced spiral shocks

    Spiral structure in the accretion disc of the binary IP Pegasi

    Get PDF
    We have found the first convincing evidence for spiral structure in the accretion disc of a close binary. The eclipsing dwarf nova binary IP Peg, observed during the end phase of a rise to outburst, shows strong Balmer and Helium emission lines in its spectra, with asymmetric double peaked velocity profiles produced in the accretion disc around the white dwarf. To reveal the two armed spiral on the accretion disc, we de-project the observed emission line profiles onto a Doppler coordinate frame, a technique known as Doppler tomography. The two armed spiral structure we see in the Doppler tomograms is expected to form when the disc becomes sufficiently large in outburst so that the tides induced by the secondary star can excite waves in the outer disc. Such spiral waves have been predicted in studies of tidal effects in discs and are fundamental in understanding the angular momentum budget of accretion discs.Comment: 5 pages, 2 figures, to appear in Monthly Notices of the Royal Astronomical Society. Color images at http://star-www.st-and.ac.uk/~ds10/spirals.htm

    The rotational broadening and the mass of the donor star of GRS 1915+105

    Full text link
    The binary parameters of the microquasar GRS 1915+105 have been determined by the detection of Doppler-shifted 12CO and 13CO lines in its K-band spectrum (Greiner et al., 2001, Nature, 414, 522). Here, we present further analysis of the same K-band VLT spectra and we derive a rotational broadening of the donor star of V sin i=26+-3 km/s from the 12CO/13CO lines. Assuming that the K-type star is tidally locked to the black hole and is filling its Roche-lobe surface, then the implied mass ratio is q = M_d/M_x = 0.058+-0.033. This result, combined with (P, K, i)=(33.5 d, 140 km/s, 66 deg) gives a more refined mass estimate for the black hole, Mx=14.0+4.4MM_x=14.0+-4.4 M_{\odot}, than previously estimated, using an inclination of i=66+-2 deg (Fender et al. 1999) as derived from the orientation of the radio jets and a more accurate distance. The mass for the early K-type giant star is Md=0.81±0.53MM_d=0.81\pm0.53 M_{\odot}, consistent with a more evolved stripped-giant donor star in GRS 1915+105 than, for example, the donor star of the prototype black-hole X-ray transient, V404 Cyg which has the longest binary period after GRS 1915+105.Comment: 4 pages, 1 figure, A&A Lette

    IUE observations of the 1987 superoutburst of the dwarf nova Z Cha

    Get PDF
    Low resolution IUE observations of the dwarf nova Z Cha during superoutburst are presented. These cover most of the development of the outburst and have sufficient time resolution to probe continuum and line behavior on orbital phase. The observed modulation on this phase is very similar to that observed in the related object OY Car. The results imply the presence of a cool spot on the edge of the edge of the accretion disk, which periodically occults the brighter inner disk. Details of the line behavior suggest that the line originated in an extended wind-emitting region. In contrast to archive spectra obtained in normal outburst, the continuum is fainter and redder, indicating that the entire superoutburst disk may be geometrically thicker than during a normal outburst

    Multicolor flickering studies of X1822-371

    Full text link
    We report on the analysis of high-speed multicolor photometry of the eclipsing X-ray binary X1822-371. We used new eclipse timings to derive a revised optical ephemeris. A quadratic fit to the eclipse timings is not statistically significant but suggests that the orbital period is increasing on a timescale of P/|Pdot|= (4.2 +/- 1.4) 10^6 yr. We find no systematic delay or advance of the optical timings with respect to the X-ray timings. Average UBVRI light curves show the deep eclipse of the disc by the secondary star superimposed on the broader and shallower occultation of the inner disc regions by the outer disc (dip), and an orbital hump centred at phase +0.25 which is mostly seen in the U and B bands. The starting phase of the dip occurs earlier for shorter wavelengths, while the egress occurs at the same phase in all bands. This suggests that the thickening of the outer, occulting disc rim is gradual with azimuth at ingress but decreases sharply at egress. We fit synthetic photometry to the extracted colors of the inner and outer disc regions to estimate their effective temperatures. We find Teff= (9+/-5) 10^7 K and Teff= (6+/-2) 10^4 K, respectively, for the inner and outer disc regions. The orbital dependency of the flickering activity is derived from the mean scatter of the individual light curves with respect to the average UBVRI light curves. The flickering curves show a broad eclipse at the dipping phases, the depth of which decreases with increasing wavelength. The blue, eclipsed flickering component is associated with the inner disc regions and can be fitted by a blackbody spectrum of Teff= (2.1+/-0.8) 10^8 K, whereas the uneclipsed flickering component probably arises from the outermost disc regions and is well described by a blackbody of Teff= (9.6+/-0.7) 10^3 K.Comment: 8 pages, 5 postscript figures, coded with MNRAS latex file. To appear in Monthly Notices of the Royal Astronomical Societ

    Mirror eclipses in the cataclysmic variable IP Peg

    Get PDF
    We present time resolved K-band infrared spectra of the dwarf nova (DN) IP Peg in early quiescence. The Brackett-gamma and HeI lines in our data show hitherto unseen behaviour, which we term a mirror eclipse, and interpret as an eclipse of the secondary star by an optically thin accretion disc. Mirror eclipses are a direct probe of the structure and physical conditions of accretion discs. For example, on assuming the relevant level populations to be in LTE, we constrain the temperature and density of the optically thin material causing the mirror eclipse to be 10,000 < T < 20,000 K and \rho ~10^-11 g/cm^3 respectively. In order to match our data we find that at least the outermost 20% of the disc (in radius) must be entirely optically thin. Implications for time-dependant disc models are examined.Comment: 10 pages, 8 figures, to appear in monthly notices (accepted) (replaced with references
    corecore