52 research outputs found

    Learning Features by Watching Objects Move

    Full text link
    This paper presents a novel yet intuitive approach to unsupervised feature learning. Inspired by the human visual system, we explore whether low-level motion-based grouping cues can be used to learn an effective visual representation. Specifically, we use unsupervised motion-based segmentation on videos to obtain segments, which we use as 'pseudo ground truth' to train a convolutional network to segment objects from a single frame. Given the extensive evidence that motion plays a key role in the development of the human visual system, we hope that this straightforward approach to unsupervised learning will be more effective than cleverly designed 'pretext' tasks studied in the literature. Indeed, our extensive experiments show that this is the case. When used for transfer learning on object detection, our representation significantly outperforms previous unsupervised approaches across multiple settings, especially when training data for the target task is scarce.Comment: CVPR 201

    Pancreatic Expression database: a generic model for the organization, integration and mining of complex cancer datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic cancer is the 5th leading cause of cancer death in both males and females. In recent years, a wealth of gene and protein expression studies have been published broadening our understanding of pancreatic cancer biology. Due to the explosive growth in publicly available data from multiple different sources it is becoming increasingly difficult for individual researchers to integrate these into their current research programmes. The Pancreatic Expression database, a generic web-based system, is aiming to close this gap by providing the research community with an open access tool, not only to mine currently available pancreatic cancer data sets but also to include their own data in the database.</p> <p>Description</p> <p>Currently, the database holds 32 datasets comprising 7636 gene expression measurements extracted from 20 different published gene or protein expression studies from various pancreatic cancer types, pancreatic precursor lesions (PanINs) and chronic pancreatitis. The pancreatic data are stored in a data management system based on the BioMart technology alongside the human genome gene and protein annotations, sequence, homologue, SNP and antibody data. Interrogation of the database can be achieved through both a web-based query interface and through web services using combined criteria from pancreatic (disease stages, regulation, differential expression, expression, platform technology, publication) and/or public data (antibodies, genomic region, gene-related accessions, ontology, expression patterns, multi-species comparisons, protein data, SNPs). Thus, our database enables connections between otherwise disparate data sources and allows relatively simple navigation between all data types and annotations.</p> <p>Conclusion</p> <p>The database structure and content provides a powerful and high-speed data-mining tool for cancer research. It can be used for target discovery i.e. of biomarkers from body fluids, identification and analysis of genes associated with the progression of cancer, cross-platform meta-analysis, SNP selection for pancreatic cancer association studies, cancer gene promoter analysis as well as mining cancer ontology information. The data model is generic and can be easily extended and applied to other types of cancer. The database is available online with no restrictions for the scientific community at <url>http://www.pancreasexpression.org/</url>.</p

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P &lt; 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Mathematical modelling and experimental studies with physiologically sensitive polymers

    No full text
    The transport of physiological solution into cationic polymers and the associated solute transport therefrom were investigated. Cationic polymers of poly(diethyl aminoethyl methacrylate -co- 2-hydroxyethyl methacrylate), poly(diethyl aminoethyl acrylate -co- 2-hydroxyethyl methacrylate) and poly(3-methacryl amidopropyl trimethyl ammonium chloride -co- 2-hydroxyethyl methacrylate) were synthesized using free radical polymerization with a thermal initiator. The ensuing polymers were characterized using differential scanning calorimetry and dynamic mechanical analysis. Gravimetric studies were carried out in citrate-phosphate-borate buffer solution to understand the transport behavior as a function of physiological parameters such as the pH, ionic strength and the nature of ions present in the solution. The glassy-rubbery transition in the polymer was observed experimentally and the glassy-rubbery front velocity was measured as a function of the pH of the physiological solution. Polymer characteristics like the molecular weight between crosslinks were measured and used to calculate the polymer-solution interaction parameter. The mesh size of the polymer networks was calculated as a function of time. Release systems were prepared by loading the polymers with oxprenolol HCl, albumin, insulin and myoglobin. Drug release was monitored with a UV-Vis spectrophotometer. The effect of pH of the release medium on the release kinetics was studied. The effect of concentration of ionizable groups in the polymer on the release was studied and the interaction of ionic drugs with the ionic polymers was investigated. The transport of physiological solution and the subsequent drug release from these polymers were modelled using the generalized Stefan Maxwell equations. A generalized form of the Frisch (1978) equation was used for water transport and a Nernst-Planck type equation was used for ion transport. This model was solved numerically for the case of a thin slab. Structural changes occurring in the polymer network such as the glassy-rubbery transition and swelling were also taken into account. The partition of ions between the polymer and solution was modelled using the concept of Donnan equilibrium. The model was subsequently modified to incorporate an ionic stress generated by the ionization of the pendant groups along with the stress due to the glassy-rubbery transition. A model was also developed to describe the swelling of the polymer in terms of the Hamiltonian of the system. The model parameters were successfully measured using experiments. Solute transport from systems containing ionic drugs which interact with the ionic polymer was also described with these models. The results of these models demonstrated clearly the effect of the pH, ionic strength and the concentration of ionizable groups on the swelling and release behavior

    Eliminating Channel Feedback in Next-Generation Cellular Networks

    No full text
    This paper focuses on a simple, yet fundamental question: ``Can a node infer the wireless channels on one frequency band by observing the channels on a different frequency band?'' This question arises in cellular networks, where the uplink and the downlink operate on different frequencies. Addressing this question is critical for the deployment of key 5G solutions such as massive MIMO, multi-user MIMO, and distributed MIMO, which require channel state information. We introduce R2-F2, a system that enables LTE base stations to infer the downlink channels to a client by observing the uplink channels from that client. By doing so, R2-F2 extends the concept of reciprocity to LTE cellular networks, where downlink and uplink transmissions occur on different frequency bands. It also removes a major hurdle for the deployment of 5G MIMO solutions. We have implemented R2-F2 in software radios and integrated it within the LTE OFDM physical layer. Our results show that the channels computed by R2-F2 deliver accurate MIMO beamforming (to within 0.7~dB of beamforming gains with ground truth channels) while eliminating channel feedback overhead

    Berberine chloride causes a caspase-independent, apoptotic-like death in Leishmania donovani promastigotes

    No full text
    Berberine chloride, a quarternary isoquinoline alkaloid, is a promising anti-leishmanial compound, IC50 being 7.1 ”M in L. donovani promastigotes. This leishmanicidal activity was initiated by its pro-oxidant effect, evidenced by enhanced generation of reactive oxygen intermediates that was accompanied by depletion of thiols; pre-incubation in N-acetyl cysteine, attenuated its cell viability, corroborating that generation of free radicals triggered its parasiticidal activity. Externalization of phosphatidylserine and elevation of intracellular calcium preceded depolarization of the mitochondrial membrane potential, which translated into an increase in the sub G0/G1 population and was accompanied by DNA laddering, hallmarks of apoptosis. Berberine chloride failed to induce caspase activity and anti-leishmanial activity in the presence of a pan caspase inhibitor, Z-Val-Ala-DL-Asp (methoxy)-fluoromethylketone remained unchanged, which indicated that the apoptosis was caspase independent. Collectively, the data indicates that Berberine chloride triggers an apoptosis-like death following enhanced generation of reactive oxygen species, thus meriting further pharmacological investigations

    Imidazole Nitrogens of Two Histidine Residues Participating in N–H···N Hydrogen Bonds in Protein Structures: Structural Bioinformatics Approach Combined with Quantum Chemical Calculations

    No full text
    Protein structures are stabilized by different types of hydrogen bonds. However, unlike the DNA double helical structure, the N–H···N type of hydrogen bonds is relatively rare in proteins. N–H···N hydrogen bonds formed by imidazole groups of two histidine residues have not been investigated. We have systematically analyzed 5333 high-resolution protein structures with resolution 1.8 Å or better and identified 285 histidine pairs in which the nitrogen atoms of the imidazole side chains can potentially participate in N–H···N hydrogen bonds. The histidine pairs were further divided into two groups, neutral–neutral and protonated–neutral, depending on the protonation state of the donor histidine. Quantum chemical calculations were performed on imidazole groups adopting the same geometry observed in the protein structures. Average interaction energies between the interacting imidazole groups are −6.45 and −22.5 kcal/mol for neutral–neutral and protonated–neutral, respectively. Hydrogen bond interaction between the imidazole moieties is further confirmed by natural bond orbital analyses of the model compounds. Histidine residues involved in N–H···N hydrogen bonds are relatively more buried and have low <i>B</i>-factor values in the protein structures. N–H···N hydrogen bond formed by a pair of buried histidine residues can significantly contribute to the structural stability of proteins
    • 

    corecore