303 research outputs found

    Forest die-off following global-change-type drought alters rhizosphere fungal communities

    Get PDF
    Globally, forest die-off from global-change-type drought events (hotter droughts) are of increasing concern, with effects reported from every forested continent. While implications of global-change-type drought events have been explored for above-ground vegetation, below-ground organisms have received less attention, despite their essential contributions to plant growth, survival, and ecosystem function. We investigated rhizosphere fungal communities in soils beneath trees affected by a global-change-type drought in a Mediterranean climate-type ecosystem in southwestern Australia, quantifying how fungal richness, composition and functional groups varied along a drought impact gradient. Following a forest die-off three years previously, we collected soils beneath dead and alive trees within forest exhibiting high, minimal and relatively unaffected levels of forest die-off. Rhizosphere fungal DNA was extracted from soils, amplified and subjected to high throughput sequencing. Fungal community composition varied significantly (P < 0.001) along the drought impact gradient with less richness in drought affected stands. There was some evidence of community differentiation between dead versus alive trees (P = 0.09), and no difference in rarefied richness and diversity. When considered by functional group, die-off-impacted plots had more arbuscular mycorrhizal fungi (AM) and saprotrophs, and fewer ectomycorrhizal fungi (ECM), compared with living trees from the unaffected plots. Further, within die-off plots, dead versus alive tree rhizosphere samples contained more AM, saprotrophs and pathogens, and fewer ECM. Disruptions to rhizosphere fungal communities, such as altered functional groups, can have implications for ecosystem persistence and function, particularly in regions projected to experience increased global-change-type drought events

    Field-Induced Magnetization Steps in Intermetallic Compounds and Manganese Oxides: The Martensitic Scenario

    Full text link
    Field-induced magnetization jumps with similar characteristics are observed at low temperature for the intermetallic germanide Gd5Ge4and the mixed-valent manganite Pr0.6Ca0.4Mn0.96Ga0.04O3. We report that the field location -and even the existence- of these jumps depends critically on the magnetic field sweep rate used to record the data. It is proposed that, for both compounds, the martensitic character of their antiferromagnetic-to-ferromagnetic transitions is at the origin of the magnetization steps.Comment: 4 pages,4 figure

    Relational Hidden Variables and Non-Locality

    Full text link
    We use a simple relational framework to develop the key notions and results on hidden variables and non-locality. The extensive literature on these topics in the foundations of quantum mechanics is couched in terms of probabilistic models, and properties such as locality and no-signalling are formulated probabilistically. We show that to a remarkable extent, the main structure of the theory, through the major No-Go theorems and beyond, survives intact under the replacement of probability distributions by mere relations.Comment: 42 pages in journal style. To appear in Studia Logic

    The work role functioning questionnaire v2.0 showed consistent factor structure across six working samples

    Get PDF
    Objective  The Work Role Functioning Questionnaire v2.0 (WRFQ) is an outcome measure linking a persons' health to the ability to meet work demands in the twenty-first century. We aimed to examine the construct validity of the WRFQ in a heterogeneous set of working samples in the Netherlands with mixed clinical conditions and job types to evaluate the comparability of the scale structure.  Methods  Confirmatory factor and multi-group analyses were conducted in six cross-sectional working samples (total N = 2433) to evaluate and compare a five-factor model structure of the WRFQ (work scheduling demands, output demands, physical demands, mental and social demands, and flexibility demands). Model fit indices were calculated based on RMSEA ≤ 0.08 and CFI ≥ 0.95. After fitting the five-factor model, the multidimensional structure of the instrument was evaluated across samples using a second order factor model.  Results  The factor structure was robust across samples and a multi-group model had adequate fit (RMSEA = 0.63, CFI = 0.972). In sample specific analyses, minor modifications were necessary in three samples (final RMSEA 0.055-0.080, final CFI between 0.955 and 0.989). Applying the previous first order specifications, a second order factor model had adequate fit in all samples.  Conclusion  A five-factor model of the WRFQ showed consistent structural validity across samples. A second order factor model showed adequate fit, but the second order factor loadings varied across samples. Therefore subscale scores are recommended to compare across different clinical and working samples

    Do state-and-transition models derived from vegetation succession also represent avian succession in restored mine pits?

    Get PDF
    State-and-transition models are increasingly used as a tool to inform management of post-disturbance succession and effective conservation of biodiversity in production landscapes. However, if they are to do this effectively, they need to represent faunal, as well as vegetation, succession. We assessed the congruence between vegetation and avian succession by sampling avian communities in each state of a state-and-transition model used to inform management of post-mining restoration in a production landscape in southwestern Australia. While avian communities differed significantly among states classified as on a desirable successional pathway, they did not differ between desirable and deviated states of the same post-mining age. Overall, we concluded there was poor congruence between vegetation and avian succession in this state-and-transition model. We identified four factors that likely contributed to this lack of congruence, which were that long-term monitoring of succession in restored mine pits was not used to update and improve models, states were not defined based on ecological processes and thresholds, states were not defined by criteria that were important in structuring the avian community, and states were not based on criteria that related to values in the reference community. We believe that consideration of these four factors in the development of state-and-transition models should improve their ability to accurately represent faunal, as well as vegetation, succession. Developing state-and-transition models that better incorporate patterns of faunal succession should improve the ability to manage post-disturbance succession across a range of ecosystems for biodiversity conservation

    Non-linear electrical response in a charge/orbital ordered Pr0.63\Pr_{0.63}Ca0.37_{0.37}MnO3_3 crystal : the charge density wave analogy

    Full text link
    Non-linear conduction in a charge-ordered manganese oxide Pr0.63_{0.63}Ca0.37_{0.37}MnO3_3 is reported. To interpret such a feature, it is usually proposed that a breakdown of the charge or orbitally ordered state is induced by the current. The system behaves in such a way that the bias current may generate metallic paths giving rise to resistivity drop. One can describe this feature by considering the coexistence of localized and delocalized electron states with independent paths of conduction. This situation is reminiscent of what occurs in charge density wave systems where a similar non-linear conduction is also observed. In the light of recent experimental results suggesting the development of charge density waves in charge and orbitally ordered manganese oxides, a phenomenological model for charge density waves motion is used to describe the non-linear conduction in Pr0.63_{0.63}Ca0.37_{0.37}MnO3_3. In such a framework, the non-linear conduction arises from the motion of the charge density waves condensate which carries a net electrical current.Comment: 13 pages, 6 figure

    Neutron scattering search for static magnetism in oxygen ordered YBa2Cu3O6.5

    Full text link
    We present elastic and inelastic neutron scattering results on highly oxygen ordered YBa2Cu3O6.5 ortho-II. We find no evidence for the presence of ordered magnetic moments to a sensitivity of 0.003 Bohr magnetons, an order of magnitude smaller than has been suggested in theories of orbital or d-density-wave (DDW) currents. The absence of sharp elastic peaks, shows that the d-density-wave phase is not present, at least for the superconductor with the doping of 6.5 and the ordered ortho-II structure. We cannot exclude the possibility that a broad peak may exist with extremely short-range DDW correlations. For less ordered or more doped crystals it is possible that disorder may lead to static magnetism. We have also searched for the large normal state spin gap that is predicted to exist in an ordered DDW phase. Instead of a gap we find that the Q-correlated spin susceptibility persists to the lowest energies studied, 6 meV. Our results are compatible with the coexistence of superconductivity with orbital currents, but only if they are dynamic, and exclude a sharp phase transition to an ordered d-density-wave phase.Comment: 6 pages 4 figures RevTex Submitted to Phys Rev B January 23, 200

    Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals

    Full text link
    High-order derivatives of analytic functions are expressible as Cauchy integrals over circular contours, which can very effectively be approximated, e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius of convergence is equal, numerical stability strongly depends on r. We give a comprehensive study of this effect; in particular we show that there is a unique radius that minimizes the loss of accuracy caused by round-off errors. For large classes of functions, though not for all, this radius actually gives about full accuracy; a remarkable fact that we explain by the theory of Hardy spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and by the saddle-point method of asymptotic analysis. Many examples and non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat

    QED3 theory of underdoped high temperature superconductors

    Full text link
    Low-energy theory of d-wave quasiparticles coupled to fluctuating vortex loops that describes the loss of phase coherence in a two dimensional d-wave superconductor at T=0 is derived. The theory has the form of 2+1 dimensional quantum electrodynamics (QED3), and is proposed as an effective description of the T=0 superconductor-insulator transition in underdoped cuprates. The coupling constant ("charge") in this theory is proportional to the dual order parameter of the XY model, which is assumed to be describing the quantum fluctuations of the phase of the superconducting order parameter. The principal result is that the destruction of phase coherence in d-wave superconductors typically, and immediately, leads to antiferromagnetism. The transition can be understood in terms of the spontaneous breaking of an approximate "chiral" SU(2) symmetry, which may be discerned at low enough energies in the standard d-wave superconductor. The mechanism of the symmetry breaking is analogous to the dynamical mass generation in the QED3, with the "mass" here being proportional to staggered magnetization. Other insulating phases that break chiral symmetry include the translationally invariant "d+ip" and "d+is" insulators, and various one dimensional charge-density and spin-density waves. The theory offers an explanation for the rounded d-wave-like dispersion seen in ARPES experiments on Ca2CuO2Cl2 (F. Ronning et. al., Science 282, 2067 (1998)).Comment: Revtex, 20 pages, 5 figures; this is a much extended follow-up to the Phys. Rev. Lett. vol.88, 047006 (2002) (cond-mat/0110188); improved presentation, many additional explanations, comments, and references added, sec. IV rewritten. Final version, to appear in Phys. Rev.

    Borexino calibrations: Hardware, Methods, and Results

    Full text link
    Borexino was the first experiment to detect solar neutrinos in real-time in the sub-MeV region. In order to achieve high precision in the determination of neutrino rates, the detector design includes an internal and an external calibration system. This paper describes both calibration systems and the calibration campaigns that were carried out in the period between 2008 and 2011. We discuss some of the results and show that the calibration procedures preserved the radiopurity of the scintillator. The calibrations provided a detailed understanding of the detector response and led to a significant reduction of the systematic uncertainties in the Borexino measurements
    corecore