757 research outputs found

    Counterfactual thinking in cooperation dynamics

    Full text link
    Counterfactual Thinking is a human cognitive ability studied in a wide variety of domains. It captures the process of reasoning about a past event that did not occur, namely what would have happened had this event occurred, or, otherwise, to reason about an event that did occur but what would ensue had it not. Given the wide cognitive empowerment of counterfactual reasoning in the human individual, the question arises of how the presence of individuals with this capability may improve cooperation in populations of self-regarding individuals. Here we propose a mathematical model, grounded on Evolutionary Game Theory, to examine the population dynamics emerging from the interplay between counterfactual thinking and social learning (i.e., individuals that learn from the actions and success of others) whenever the individuals in the population face a collective dilemma. Our results suggest that counterfactual reasoning fosters coordination in collective action problems occurring in large populations, and has a limited impact on cooperation dilemmas in which coordination is not required. Moreover, we show that a small prevalence of individuals resorting to counterfactual thinking is enough to nudge an entire population towards highly cooperative standards.Comment: 18 page

    Stable Heterogeneity for the Production of Diffusible Factors in Cell Populations

    Get PDF
    The production of diffusible molecules that promote survival and growth is common in bacterial and eukaryotic cell populations, and can be considered a form of cooperation between cells. While evolutionary game theory shows that producers and non-producers can coexist in well-mixed populations, there is no consensus on the possibility of a stable polymorphism in spatially structured populations where the effect of the diffusible molecule extends beyond one-step neighbours. I study the dynamics of biological public goods using an evolutionary game on a lattice, taking into account two assumptions that have not been considered simultaneously in existing models: that the benefit of the diffusible molecule is a non-linear function of its concentration, and that the molecule diffuses according to a decreasing gradient. Stable coexistence of producers and non-producers is observed when the benefit of the molecule is a sigmoid function of its concentration, while strictly diminishing returns lead to coexistence only for very specific parameters and linear benefits never lead to coexistence. The shape of the diffusion gradient is largely irrelevant and can be approximated by a step function. Since the effect of a biological molecule is generally a sigmoid function of its concentration (as described by the Hill equation), linear benefits or strictly diminishing returns are not an appropriate approximations for the study of biological public goods. A stable polymorphism of producers and non-producers is in line with the predictions of evolutionary game theory and likely to be common in cell populations

    The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein

    Get PDF
    The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.Comment: 19 page

    Wisdom of groups promotes cooperation in evolutionary social dilemmas

    Get PDF
    Whether or not to change strategy depends not only on the personal success of each individual, but also on the success of others. Using this as motivation, we study the evolution of cooperation in games that describe social dilemmas, where the propensity to adopt a different strategy depends both on individual fitness as well as on the strategies of neighbors. Regardless of whether the evolutionary process is governed by pairwise or group interactions, we show that plugging into the "wisdom of groups" strongly promotes cooperative behavior. The more the wider knowledge is taken into account the more the evolution of defectors is impaired. We explain this by revealing a dynamically decelerated invasion process, by means of which interfaces separating different domains remain smooth and defectors therefore become unable to efficiently invade cooperators. This in turn invigorates spatial reciprocity and establishes decentralized decision making as very beneficial for resolving social dilemmas.Comment: 8 two-column pages, 7 figures; accepted for publication in Scientific Report

    Potential conservation of circadian clock proteins in the phylum Nematoda as revealed by bioinformatic searches

    Get PDF
    Although several circadian rhythms have been described in C. elegans, its molecular clock remains elusive. In this work we employed a novel bioinformatic approach, applying probabilistic methodologies, to search for circadian clock proteins of several of the best studied circadian model organisms of different taxa (Mus musculus, Drosophila melanogaster, Neurospora crassa, Arabidopsis thaliana and Synechoccocus elongatus) in the proteomes of C. elegans and other members of the phylum Nematoda. With this approach we found that the Nematoda contain proteins most related to the core and accessory proteins of the insect and mammalian clocks, which provide new insights into the nematode clock and the evolution of the circadian system.Fil: Romanowski, Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; ArgentinaFil: Garavaglia, Matías Javier. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Goya, María Eugenia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ing.genética y Biolog.molecular y Celular. Area Virus de Insectos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andres. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Cronobiología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Reward and punishment in climate change dilemmas

    Get PDF
    Mitigating climate change effects involves strategic decisions by individuals that may choose to limit their emissions at a cost. Everyone shares the ensuing benefits and thereby individuals can free ride on the effort of others, which may lead to the tragedy of the commons. For this reason, climate action can be conveniently formulated in terms of Public Goods Dilemmas often assuming that a minimum collective effort is required to ensure any benefit, and that decision-making may be contingent on the risk associated with future losses. Here we investigate the impact of reward and punishment in this type of collective endeavors - coined as collective-risk dilemmas - by means of a dynamic, evolutionary approach. We show that rewards (positive incentives) are essential to initiate cooperation, mostly when the perception of risk is low. On the other hand, we find that sanctions (negative incentives) are instrumental to maintain cooperation. Altogether, our results are gratifying, given the a-priori limitations of effectively implementing sanctions in international agreements. Finally, we show that whenever collective action is most challenging to succeed, the best results are obtained when both rewards and sanctions are synergistically combined into a single policy.This research was supported by Fundacao para a Ciencia e Tecnologia (FCT) through grants PTDC/EEISII/5081/2014 and PTDC/MAT/STA/3358/2014 and by multiannual funding of INESC-ID and CBMA (under the projects UID/CEC/50021/2019 and UID/BIA/04050/2013). F.P.S. acknowledges support from the James S. McDonnell Foundation 21st Century Science Initiative in Understanding Dynamic and Multi-scale Systems Postdoctoral Fellowship Award. All authors declare no competing financial or non-financial interests in relation to the work described

    Transcriptomic and functional analysis of the Anopheles gambiae salivary gland in relation to blood feeding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Anopheles gambiae </it>salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host.</p> <p>Results</p> <p>We have performed a global transcriptome analysis of the <it>A. gambiae </it>salivary gland response to blood-feeding, to identify candidate genes that are involved in hematophagy. A total of 4,978 genes were found to be transcribed in this tissue. A comparison of salivary gland transcriptomes prior to and after blood-feeding identified 52 and 41 transcripts that were significantly up-regulated and down-regulated, respectively. Ten genes were further selected to assess their role in the blood-feeding process using RNAi-mediated gene silencing methodology. Depletion of the salivary gland genes encoding <it>D7L2</it>, <it>anophelin</it>, <it>peroxidase</it>, the <it>SG2 precursor</it>, and a <it>5'nucleotidase </it>gene significantly increased probing time of <it>A. gambiae </it>mosquitoes and thereby their capacity to blood-feed.</p> <p>Conclusions</p> <p>The salivary gland transcriptome comprises approximately 38% of the total mosquito transcriptome and a small proportion of it is dynamically changing already at two hours in response to blood feeding. A better understanding of the salivary gland transcriptome and its function can contribute to the development of pathogen transmission control strategies and the identification of medically relevant bioactive compounds.</p

    Fructose-1, 6-diphosphate (FDP) as a novel antidote for yellow oleander-induced cardiac toxicity: A randomized controlled double blind study

    Get PDF
    BACKGROUND: Cardiac toxicity due to ingestion of oleander plant seeds in Sri Lanka and some other South Asian countries is very common. At present symptomatic oleander seed poisoning carries a mortality of 10% in Sri Lanka and treatment of yellow oleander poisoning is limited to gastric decontamination and atropine administration. The only proven effective antidote is digoxin antibodies but these are not available for routine use because of the high cost. The main objective of this study is to investigate the effectiveness of a new and inexpensive antidote for patients with life threatening arrhythmias due oleander poisoning. METHOD/DESIGN: We set up a randomised double blind clinical trial to assess the effectiveness of Fructose 1, 6 diphosphate (FDP) in acute yellow oleander poisoning patients admitted to the adult medical wards of a tertiary hospital in Sri Lanka. Patients will be initially resuscitated following the national guidelines and eligible patients will be randomised to receive either FDP or an equal amount of normal saline. The primary outcome measure for this study is the sustained reversion to sinus rhythm with a heart rate greater than 50/min within 2 hours of completion of FDP/placebo bolus. Secondary outcomes include death, reversal of hyperkalaemia on the 6, 12, 18 and 24 hour samples and maintenance of sinus rhythm on the holter monitor. Analysis will be on intention-to-treat. DISCUSSION: This trial will provide information on the effectiveness of FDP in yellow oleander poisoning. If FDP is effective in cardiac glycoside toxicity, it would provide substantial benefit to the patients in rural Asia. The drug is inexpensive and thus could be made available at primary care hospitals if proven to be effective. TRIAL REGISTRATION: Current Controlled trial ISRCTN71018309
    corecore