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Reward and punishment in climate 
change dilemmas
António R. Góis1,2,3, Fernando P. Santos4,1,2, Jorge M. Pacheco5,6,2 & Francisco C. Santos   1,2,7*

Mitigating climate change effects involves strategic decisions by individuals that may choose to limit 
their emissions at a cost. Everyone shares the ensuing benefits and thereby individuals can free ride 
on the effort of others, which may lead to the tragedy of the commons. For this reason, climate action 
can be conveniently formulated in terms of Public Goods Dilemmas often assuming that a minimum 
collective effort is required to ensure any benefit, and that decision-making may be contingent on the 
risk associated with future losses. Here we investigate the impact of reward and punishment in this type 
of collective endeavors — coined as collective-risk dilemmas — by means of a dynamic, evolutionary 
approach. We show that rewards (positive incentives) are essential to initiate cooperation, mostly 
when the perception of risk is low. On the other hand, we find that sanctions (negative incentives) 
are instrumental to maintain cooperation. Altogether, our results are gratifying, given the a-priori 
limitations of effectively implementing sanctions in international agreements. Finally, we show that 
whenever collective action is most challenging to succeed, the best results are obtained when both 
rewards and sanctions are synergistically combined into a single policy.

Climate change stands as one of our biggest challenges in what concerns the emergence and sustainability of 
cooperation1,2. Indeed, world citizens build up high expectations every time a new International Environmental 
Summit is settled, unfortunately with few resulting solutions implemented so far. This calls for the development of 
more effective incentives, agreements and binding mechanisms. The problem can be conveniently framed resort-
ing to the mathematics of game theory, being a paradigmatic example of a Public Goods Game3: at stake there is 
a global good from which every single individual can profit, irrespectively of contributing to maintain it. Parties 
may free ride on the efforts of others, avoiding any effort themselves, while driving the population into the trag-
edy of the commons4. Moreover, since here cooperation aims at averting collective losses, this type of dilemmas 
is often referred as public bad games, in which achieving collective goals often depends on reaching a threshold 
number of cooperative group members5–8.

One of the multiple obstacles attributed to such agreements is misperceiving the actual risk of future losses, 
which significantly affects the ensuing dynamics of cooperation5,9. Another problem relates to both the incapac-
ity to sanction those who do not contribute to the welfare of the planet, and/or to reward those who subscribe 
to green policies10. Previous cooperation studies show that reward (positive incentives), punishment (nega-
tive incentives) and the combination of both11–23 have a different impact depending on the dilemma in place. 
Assessing the impact of reward and punishment (isolated or combined) in the context of N-person threshold 
games — and in the particular case of climate change dilemmas — remains, however, an open problem.

Here we study, theoretically, the role of both institutional reward and punishment in the context of climate 
change agreements. Previous works consider the public good as a linear function of the number of contribu-
tors12,17,21,22 and conclude that punishment is more effective than reward (for an optimal combination of pun-
ishment and reward see ref.12). We depart from this linear regime by modeling the returns on the public good 
as a threshold problem, combined with an uncertain outcome, represented by a risk of failure. As a result – and 
as detailed below – the dynamical portrait of our model reveals new internal equilibria9, allowing to identify the 
dynamics of coordination and coexistence typifying collective action problems. As discussed below, the reward 
and punishment mechanisms will impact, in a non-trivial way, those equilibria.
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We consider a population of size Z, where each individual can be either a Cooperator (C) or a Defector (D), 
when participating in a N-player Collective-Risk dilemma (CRD)5,9,10,24–30. In this game, each participant starts 
with an initial endowment B (viewed as the asset value at stake) that may be used to contribute to the mitigation 
of the effects of climate change. A cooperator incurs a cost corresponding to a fraction c of her initial endowment 
B, in order to help prevent a collective failure. On the other hand, a defector refuses to have any cost, hoping to 
free ride on the contributions of others. We require a minimum number of 0 < M ≤ N cooperators in a group of 
size N before collective action is realized; if a group of size N  does not contain at least M Cs, all members lose their 
remaining endowments with a probability r, where r (0 ≤ r ≤ 1) stands as the risk of collective failure. Otherwise, 
everyone will keep whatever she has. This CRD formulation has been shown to capture some of the key features 
discovered in recent experiments5,24,31–33, while highlighting the importance of risk. In addition, it allows one to 
test model parameters in a systematic way that is not possible in human experiments. Moreover, the adoption of 
non-linear returns mimics situations common to many human and non-human endeavors6,34–41, where a mini-
mum joint effort is required to achieve a collective goal. Thus, the applicability of this framework extends well 
beyond environmental governance, given the ubiquity of such type of social dilemmas in nature and societies.

Following Chen et al.12, we include both reward and punishment mechanisms in this model. A fixed group 
budget Nδ (where δ ≥ 0 stands for a per-capita incentive) is assumed to be available, of which a fraction w is 
applied to a reward policy and the remaining 1-w to a punishment policy. We assume the effective impact of both 
policies to be equivalent, meaning that each unit spent will directly increase/decrease the payoff of a cooperator/
defector by the same amount. For details on policies with different efficiencies, see Methods.

Instead of considering a collection of rational agents engaging in one-shot Public Goods Games32,42, here we 
adopt an evolutionary description of the behavioral dynamics9, in which individuals tend to copy those appearing 
to be more successful. Success (or fitness) of individuals is here associated with their average payoff. All individu-
als are equally likely to interact with each other, causing all cooperators and defectors to be equivalent, on average, 
and only distinguishable by the strategy they adopt. Therefore, and considering that only two strategies are avail-
able, the number of cooperators is sufficient to describe any configuration of the population. The number of indi-
viduals adopting a given strategy (either C or D) evolves in time according to a stochastic birth–death process43,44, 
which describes the time evolution of the social learning dynamics (with exploration): At each time-step each 
individual (X, with fitness fX) is given the opportunity to change strategy; with probability μ, X randomly explores 
the strategy space45 (a process similar to mutations in a biological context that precludes the existence of absorb-
ing states). With probability (1-μ), X may adopt the strategy of a randomly selected individual (Y, with fitness 
fY), with a probability that increases with the fitness difference (fY–fX)44. This renders the stationary distribution 
(see Methods) an extremely useful tool to rank the most visited states given the ensuing evolutionary dynamics 
of the population. Indeed, the stationary distribution provides the prevalence of each of the population’s possible 
configuration, in terms of the number of Cs (k) and Ds (Z-k). Combined with the probability of success charac-
terizing each configuration, the stationary distribution can be used to compute the overall success probability of 
a given population – the average group achievement, ηG. This value represents the average fraction of groups that 
will overcome the CRD, successfully preserving the public good.

Results
In Fig. 1 we compare the average group achievement ηG (as a function of risk) in four scenarios: (i) a reference 
scenario without any policy (i.e., no reward or punishment, in black); and three scenarios where a budget is 
applied to (ii) rewards, (iii) punishment and (iv) a combination of rewards and sanctions (see below). Our results 
are shown for the two most paradigmatic regimes: low (Fig. 1A) and high (Fig. 1B) coordination requirements. 
Naturally ηG improves whenever a policy is applied. Less obvious is the difference between the various policies. 
Applying only rewards (blue curves in Fig. 1) is more effective than only punishment (red curve) for low values of 
risk. The opposite happens when risk is high. On scenarios with a low relative threshold (Fig. 1A), rewards play 
the key role, with sanctions only marginally outperforming them for very high values of risk. For high coordina-
tion thresholds (Fig. 1B) reward and punishment portray comparable efficiency in the promotion of cooperation, 
with pure-Punishment (w = 0) performing slightly better than pure-Reward (w = 1).

Justifying these differences is difficult from the analysis of ηG alone. To better understand the behavior dynam-
ics under Reward and Punishment, we show in Fig. 2 the gradients of selection (top panels) and stationary distri-
butions (lower panels) for each case and different budget values. Each gradient of selection represents, for each 
discrete state k/Z (i.e., fraction of Cs), the difference = −+ −G k T k T k( ) ( ) ( ) among the probability to increase 
(T+(k)) and decrease (T−(k)) the number of cooperators (see Methods) by one. Whenever G(k) > 0 the fraction 
of Cs is likely to increase; whenever G(k) < 0 the opposite is expected to happen. The stationary distributions 
show how likely it is to find the population in each (discrete) configuration of our system. The panels on the 
left-hand side show the results obtained for the CRD under pure-Reward; on the right-hand side, we show the 
results obtained for pure-Punishment.

Naturally, both mechanisms are inoperative whenever the per-capita incentives are inexistent (δ = 0), creat-
ing a natural reference scenario in which to study the impact of Reward and Punishment on the CRD. In this 
case, above a certain value of risk (r), decision-making is characterized by two internal equilibria (i.e., adjacent 
finite population states with opposite gradient sign, representing the analogue of fixed points in a dynamical 
system characterizing evolution in infinite populations). Above a certain fraction of cooperators the population 
overcomes the coordination barrier and naturally self-organizes towards a stable co-existence of cooperators 
and defectors. Otherwise, the population is condemned to evolve towards a monomorphic population of defec-
tors, leading to the tragedy of the commons9. As the budget for incentives increases, using either Reward or 
Punishment leads to very different outcomes, as depicted in Fig. 2.

Contrary to the case of linear Public Goods Games12, in the CRD coordination and co-existence dynam-
ics already exist in the absence of any reward/punishment incentive. Reward is particularly effective when 
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cooperation is low (small k/Z), showing a significant impact on the location of the finite population analogue of 
an unstable fixed point. Indeed, increasing δ lowers the minimum number of cooperators required to reach the 
cooperative basin of attraction (as well as increasing the prevalence of cooperators in co-existence point on the 
right), which ultimately disappears for high δ (Fig. 2A). This means that a smaller coordination effort is required 
before the population dynamics start to naturally favor the increase of cooperators. Once this initial barrier is 
surpassed, the population will naturally tend towards an equilibrium state, which does not improve appreciably 
under Reward. The opposite happens under Punishment. The location of the coordination point is little affected, 
yet once this barrier is overcome, the population will evolve towards a more favorable equilibrium (Fig. 2B). Thus, 
while Reward seems to be particularly effective to bootstrap cooperation towards a more cooperative basin of 
attraction, Punishment seems effective in sustaining high levels of cooperation.

As a consequence, the most frequently observed configurations are very different when using each of the 
policies. As shown by the stationary distributions (Fig. 2C,D), under Reward the population visits more often 
states with intermediate values of cooperation (i.e., where Cs and Ds co-exist). Intuitively, this happens because 
the coordination effort is eased by the rewards, causing the population to effectively overcome it and reach the 
coexistence point (the equilibrium state with an intermediate amount of cooperators) thus spending most of the 
time near it. On the other hand, Punishment will not ease the coordination effort, and thus the population will 
spend most of the time in states of low cooperation, failing to overcome this barrier. Notwithstanding, once sur-
passed, the population will stabilize on higher states of cooperation. This is especially evident for high budgets, 
as shown with δ = 0.02 (blue line). Moreover, since Nδ corresponds to a fixed total amount which is distributed 
by the existing cooperators/defectors, this causes the per-cooperator/defector budget to vary depending on the 
number of existing cooperators/defectors (i.e., each of the j cooperators receives wδN/j and each defector loses 
(1 − w)δN/(N − j)). In other words, positive (negative) incentives become very profitable (or severe) if defection 
(cooperation) prevails within a group. In particular, whenever the budget is significant (see, e.g., δ = 0.02 in Fig. 2) 
the punishment becomes so high when there are few defectors within a group, that a new equilibrium emerges 
close to full cooperation.

The results in Fig. 2 show that Reward can be instrumental in fostering pro-social behavior, while Punishment 
can be used for its maintenance. This suggests that, to combine both policies synergistically, pure-Reward (w = 1) 
should be applied at first, when there are few cooperators (low k/Z); above a certain critical point (k/Z = s) one 
should switch to pure-Punishment (w = 0). In the Methods section, we demonstrate that, similar to linear Public 
Goods Games12, in CRDs this is indeed the policy which minimizes the advantage of the defector, even if we con-
sider the alternative possibility of applying both policies simultaneously. In Methods, we also compute a general 
expression for the optimal switching point s*, that is, the value of k above which Punishment should be applied 
instead of Reward to maximize cooperation and group achievement. By using such policy — that we denote by s* 
— we obtain the best results shown with an orange line in Fig. 1. We propose, however, to explore what happens 
in the context of a CRD when s* is not used. How much cooperation is lost when we deviate from s* to either of 
the pure policies, or to a policy which uses a switching point different from the optimal one?

Figure 1.  Average group achievement ηG as a function of risk. Left: Group relative threshold M/N = 3/10. Right: 
Group relative threshold M/N = 7/10. In both panels, the black line corresponds to a reference scenario where 
no policy is applied. The red line shows ηG in the case where all available budget is applied to pure-Punishment 
(w = 0), whereas the blue line shows results for pure-Reward (w = 1). Pure-Reward is most effective at low risk 
values, while pure-Punishment is marginally the most effective policy at high risk. These features are more 
pronounced for low relative thresholds (left panel), and only at high thresholds does pure-Punishment lead 
to a sizeable improvement with respect to pure-Reward. Finally, the orange line shows the results using the 
combination of Reward and Punishment, leading (naturally) to the best results. In this case, we adopt pure-
Reward (w = 1) when there are few cooperators and, above a certain critical point k/Z = s = 0.5, we switch to 
pure-Punishment (w = 0). As detailed in the main text (see Fig. 3 and Methods), s = 0.5 provides the optimal 
switching point s* for cooperation to thrive. Other parameters: Population size Z = 50, group size N = 10, cost 
of cooperation c = 0.1, initial endowment B = 1, budget δ = 0.025, reward efficiency a = 1, punishment efficiency 
b = 1, intensity of selection β = 5, mutation rate µ = 0.01.
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Figure 3 illustrates how the choice of the switching point s impacts the overall cooperation, as evaluated by 
ηG, for different values of risk. For a switching point of s = k/Z = 1.0 (0.0) a static policy of always pure-Reward 
(pure-Punishment) is used. This can be seen on the far right (left) of Fig. 3. Figure 3 suggests that, for low thresh-
olds, an optimal policy switching (which, for the parameters shown, occurs for s = 50%, see Methods) is only mar-
ginally better than a policy solely based on rewards (s = 1). Figure 3 also allows for a comparison of what happens 
when the switching point occurs too late (excessive rewards) or too early (excessive sanctions) in a low-threshold 
scenario. A late switch is significantly less harmful than an early one. In other words, our results suggest that 
when the population configuration cannot be precisely observed, it is preferable to keep rewarding for longer. 
This said, whenever the perception of risk is high (an unlikely situation these days) an early switch is slightly less 
harmful than a late one. In the most difficult scenarios, where stringent coordination requirements (large M) are 
combined with a low perception of risk (low r), the adoption of a combined policy becomes necessary (see right 
panel of Fig. 1).

Discussion
One might expect the impact of Reward and Punishment to lead to symmetric outcomes – Punishment would 
be effective for high-cooperation the same way that Reward is effective for low-cooperation. In low-cooperation 
scenarios (under low risk, threshold or budget) Reward alone plays the most important role. However, in the 
opposite scenario, Punishment alone does not have the same impact. Either a favourable scenario occurs, where 
any policy yields a satisfying result, or Punishment cannot improve outcomes on its own. In the latter case, the 
synergy between both policies becomes essential to achieve cooperation. Such optimal policy involves a combi-
nation of the single policies, Reward and Punishment, which is dynamic, in the sense that the combination does 
not remain the same for all configurations of the population. It corresponds to employing pure Reward at first, 
when cooperation is low, switching subsequently to Punishment whenever a pre-determined level of cooperation 
is reached.

Figure 2.  Gradient of selection (top panels, A and B) and stationary distribution (bottom panels, C and D) 
for the different values of per-capita budget δ indicated, using either pure-Reward (w = 1, left panels) or pure-
Punishment (w = 0, right panels). The black curve is equal on the left and right panels, since in this case δ = 0. 
As δ increases, the behaviour under Reward and Punishment is qualitatively similar, by displacing the (unstable) 
coordination equilibrium towards lower values of k/Z, while displacing the (stable) coexistence equilibrium 
towards higher values of k/Z. This happens, however, only for low values of δ. Indeed, by further increasing 
δ one observes very different behaviours under Reward and Punishment: Whereas under Punishment the 
equilibria are further moved apart (in accord with what happened for low δ) under Reward the coordination 
equilibrium disappears, and the overall dynamics becomes characterized by a single coexistence equilibrium 
which consistently shifts towards higher values of k/Z with increasing δ. This difference in behaviour, in turn, 
has a dramatic impact in the overall prevalence of configurations achieved by the population dynamics, as 
shown by the stationary distributions: On panel C (pure-Reward) the population spends most of the time on 
intermediate states of cooperation. On panel D (pure-Punishment) the population spends most of the time on 
both extremes (high and low cooperation) but especially on low cooperation states. Other parameters: Z = 50, 
N = 10, M = 5, c = 0.1, B = 1, r = 0.5, a = b = 1, β = 5 and µ = 0.01 (see Methods for details).
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The optimal procedure, however, is unlikely to be realistic in the context of Climate Change agreements. 
Indeed, and unlike other Public Goods Dilemmas, where Reward and Punishment constitute the main policies 
available for Institutions to foster cooperative collective action, in International Agreements it is widely recog-
nized that Punishment is very difficult to implement2,42. This has been, in fact, one of the main criticisms put 
forward in connection with Global Agreements on Climate Mitigation: They suffer from the lack of sanctioning 
mechanisms as it is practically impossible to enforce any type of sanctioning at a Global level. In this sense, the 
results obtained here by means of our dynamical, evolutionary approach, are gratifying, given these a-priori limi-
tations of sanctioning in CRDs. Not only do we show that Reward is essential to foster cooperation, mostly when 
both the perception of risk is low and the overall number of engaged parties is small (low k/Z), but also we show 
that Punishment mostly acts to sustain cooperation, after it has been installed. Given that low-risk scenarios are 
more common and harmful to cooperation than high-risk ones, our results in connection with rewards provide 
a viable way to explore in the quest for establishing Global cooperative collective action. Reward policies may 
also be very relevant in scenarios where Climate Agreements are coupled with other International agreements 
from which parties are not interested to deviate from2,42. Finally, the fact that rewards ease coordination towards 
cooperative states suggests that positive incentives should also be used within intervention mechanisms aiming at 
fostering pro-sociality in artificial systems and hybrid populations comprising humans and machines46–49.

The model used takes for granted the existence of an institution with a budget available to implement either 
Reward or Punishment. New behaviours may emerge once individuals are called to decide whether or not to 
contribute to such an institution, allowing for a scenario where this institution fails to exist10,28,50,51. At present, 
and under the Paris agreement, we are witnessing the potential birth of an informal funding institution, whose 
goal is to finance developing countries to help them increase their mitigation capacity. Clearly, this is just an 
example pointing out to the fact that the prevalence of local and global institutional incentives may depend and 
may be influenced by the distribution of wealth available among parties, in the same way that it influences the 
actual contributions to the public good10,29,33. Finally, several other effects may further influence and/or affect 
the present results. Among others, if intermediate tasks are considered33, or if individuals have the opportunity 
to pledge their contribution before their actual action7,40,52, it is likely that pro-social behavior may be enhanced. 
Work along these lines is in progress.

Methods
Public goods and collective risks.  Let us consider a population with Z individuals, where each individual 
can be a cooperator (C) or a defector (D). For each round of this game, a group of N players is sampled from the 
original finite population of size Z, which corresponds to a process of sampling without replacement. The proba-
bility of a group comprising any possible combination of Cs and Ds is given by the hypergeometric distribution. 
In the context of a given group, a strategy is associated with a payoff value corresponding to an individual’s earn-
ings in that round, which depend on the action of the rest of group. Fitness is the expected payoff of an individual 
in a population, before knowing to which group he was assigned. This way, for a population with k out of Z Cs and 
each group containing j out of N Cs, the fitness of a D and a C can be written as:

Figure 3.  Average group achievement ηG as a function of the location of the switching point s. The switching 
point s corresponds to the configuration (fraction of Cs in the population, k/Z) above which w suddenly 
switches from pure-Reward (w = 1) to pure-Punishment (w = 0). Assuming both policies are equally efficient, 
the optimal switching point occurs at 50% of cooperators (k/Z = 0.5). The far-left values of s correspond 
to a static policy of always pure-Punishment – the switch from pure-Reward to pure-Punishment occurs 
immediately at 0% of cooperators. On the far-right (switching point = 100%) a pure-Reward policy is depicted. 
We can also see what happens when the switch occurs too late or too early, for different values of risk. For low 
values of risk, it is significantly less harmful to have a late switch from Reward to Punishment than an early one, 
meaning that when the population configuration cannot be precisely observed, it is preferable to keep rewarding 
for longer. See Methods for the calculation of the optimal switching point (s*) that maximizes cooperation 
fitness relative to defection – and consequent group achievement. Other parameters: Z = 50, B = 1, µ = 0.01, 
β = 5, N = 10, M = 3, c = 0.1, and δ = 0.025.
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where Π j( )C  and Π j( )D  stand for the payoff or a C and a D in a single round, in a group with N players and j Cs. To 
define the payoff functions, let θ x( ) be a Heaviside step-function distribution, where θ(x) = 0 if x < 0 and θ(x) = 1 
if x ≥ 0. Each player can contribute with a fraction c of her endowment B (with 0 ≤ c ≤ 1), and in case a group 
contains less than M cooperators (0 < M ≤ N) there is a risk r of failure (0 ≤ r ≤ 1), in which case no player obtains 
her remaining endowment. The payoff of a defector (Π j( )D ) and the payoff of a cooperator (Π j( )C ), before incor-
porating any policy, can be written as9:
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Reward and punishment.  To include a Reward or a Punishment policy, let us follow ref.12 and consider 
a group budget N∙δ which can be used to implement any type of policy. The fraction of N∙δ applied to Reward 
is represented by the weight w, with 0 ≤ w ≤ 1. Parameters a and b correspond to the efficiency of Reward and 
Punishment (for all Figures above it was assumed that a = b = 1).

δ
Π = Π −

−
−

j j b w N
N j

( ) ( ) (1 )
(5)

D
P

D

δ
Π = Π +j j awN

j
( ) ( )

(6)
C
R

C

Naturally, these new payoff functions can be included into the previous fitness functions (ΠD
P  replaces ΠD and 

ΠC
R replaces ΠC), letting fitness values account for the different policies.

Evolutionary dynamics in finite populations.  The fitness functions written above allow us to setup the 
(discrete time) evolutionary dynamics. Indeed, the configurations of the entire population may be used to define 
a Markov Chain, where each state is characterized by number of cooperators9,44. To decide in which direction 
the system will evolve, at each step a player i and a neighbour j of her are drawn at random from the population. 
Player i decides whether to imitate her neighbour j with a probability depending on the difference between their 
fitness43,44. This way, a system with k cooperators may stay in the same state, switch to k − 1 or to k + 1. The prob-
ability of player i imitating player j can be given by the Fermi function:
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where β is the intensity of selection. Using this probability distribution, we can fully characterize this Markov 
process. Let k be the total number of cooperators in the population and Z the total size of the population. +T k( ) 
and −T k( ) are the probabilities to increase and decrease k by one, respectively44:
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The most likely direction can be computed using the difference ≡ −+ −G k T k T k( ) ( ) ( ). A mutation rate can be 
introduced by using transition probabilities μ μ= − +μ

+ + −T k T k( ) (1 ) ( ) Z k
Z

 and μ μ= − +μ
− −T k T k( ) (1 ) ( ) k

Z
. 

In all cases we used a mutation rate μ = 0.01, this way avoiding the population to fixate in a monomorphic configu-
ration. In this context, the stationary distribution becomes a very useful tool to analyse the overall population 
dynamics, providing the probability =p P( )k

k
Z

 for each of the Z + 1 states of this Markov Chain to be occupied53,54. 
For each given population state k, the hypergeometric distribution can be used to compute the average fraction of 
groups that obtain success −aG(k). Using the stationary distribution and the average group success, the average 
group achievement (ηG) can then be computed, providing the overall probability of achieving success: 
η = ∑ = p a k( )G k

Z
k G0 .

Combined policies.  By allowing the weight w to depend on the frequency of cooperators, we can derive 
the optimal switching point s* between positive and negative incentives by minimizing the defector’s advantage 
(fD − fC). This is done similarly to ref.12, but using finite populations and therefore a hypergeometric distribution 
(see Eqs (1), (2), (5), and (6)), to account for sampling without replacement. From Eqs (1) and (2), we get
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from which we aim at finding the value of w (with respect to k) that minimizes F′ = fD − fC. Since Π j( )D , Π +j( 1)C  
and c do not depend on w, these quantities do not affect the choice of the optimal w, leaving us with the problem 
of minimizing the following expression:
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The second summation does not depend on w; thus the optimal policy is given by the minimization of:
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Since N and δ are always positive, the whole expression can be divided by Nδ without changing the optimiza-
tion problem. Moreover, by multiplying the expression by (−1), it can finally be shown that minimizing fD − fC is 
equivalent to maximizing the following expression:

Figure 4.  Optimal switching point s* as a function of the ratio a/b, for different values of N (see Methods).
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where j represents the number of Cs in a group of size N, sampled without replacement from a population of size 
Z containing k Cs. Now, let us consider that the optimal switching point s* depends on k. Since this sum decreases 
as k increases, containing only one root, the solution to this optimization problem corresponds to having w set to 
1 (pure Reward) for positive values of the sum, suddenly switching to w = 0 (pure Punishment) once the sum 
becomes negative. The optimal switching point s* depends on the ratio a

b
, group size N and population size Z. The 

effect of population size (Z) and group size (N) on s* is limited, while the impact of the efficiency of reward (a) 
and punishment (b) is illustrated in Fig. 4. For = 1a

b
 the switching point is s* = 0.5 (see Fig. 4). Interestingly, we 

note that, also in the CRD, s* is not impacted by the group success threshold (M) or the risk associated with los-
ing the retained endowment when collective success is not attained (r). This is the case as we assume that the 
decision to punish or reward is independent on M or r. Notwithstanding, the model that we present can, in the 
future, be tuned to test more sophisticated incentive tools, such as rewarding or punishing depending on (i) how 
far group contributions remained from (or surpassed) the minima to achieve group success or (ii) how soft/strict 
is the dilemma at stake, given the likelihood of losing everything when collective success is not accomplished.
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