23 research outputs found
Callophycoic acids and callophycols from the Fijian red alga Callophycus serratus
Callophycoic acids A−H (1−8) and callophycols A and B (9 and 10) were isolated from extracts of the Fijian red alga Callophycus serratus, and identified by NMR, X-ray, and mass spectral analyses. These natural products represent four novel carbon skeletons, providing the first examples of diterpene−benzoic acids and diterpene−phenols in macroalgae. Compounds 1−10 exhibited antibacterial, antimalarial, and anticancer activity, although they are less bioactive than diterpene-benzoate macrolides previously isolated from this red alga
Observing Supermassive Black Holes across cosmic time: from phenomenology to physics
In the last decade, a combination of high sensitivity, high spatial
resolution observations and of coordinated multi-wavelength surveys has
revolutionized our view of extra-galactic black hole (BH) astrophysics. We now
know that supermassive black holes reside in the nuclei of almost every galaxy,
grow over cosmological times by accreting matter, interact and merge with each
other, and in the process liberate enormous amounts of energy that influence
dramatically the evolution of the surrounding gas and stars, providing a
powerful self-regulatory mechanism for galaxy formation. The different
energetic phenomena associated to growing black holes and Active Galactic
Nuclei (AGN), their cosmological evolution and the observational techniques
used to unveil them, are the subject of this chapter. In particular, I will
focus my attention on the connection between the theory of high-energy
astrophysical processes giving rise to the observed emission in AGN, the
observable imprints they leave at different wavelengths, and the methods used
to uncover them in a statistically robust way. I will show how such a combined
effort of theorists and observers have led us to unveil most of the SMBH growth
over a large fraction of the age of the Universe, but that nagging
uncertainties remain, preventing us from fully understating the exact role of
black holes in the complex process of galaxy and large-scale structure
formation, assembly and evolution.Comment: 46 pages, 21 figures. This review article appears as a chapter in the
book: "Astrophysical Black Holes", Haardt, F., Gorini, V., Moschella, U and
Treves A. (Eds), 2015, Springer International Publishing AG, Cha
Multi-trait genome-wide association study identifies new loci associated with optic disc parameters
A new avenue of mining published genome-wide association studies includes the joint analysis of related traits. The power of this approach depends on the genetic correlation of traits, which reflects the number of pleiotropic loci, i.e. genetic loci influencing multiple traits. Here, we applied new meta-analyses of optic nerve head (ONH) related traits implicated in primary open-angle glaucoma (POAG); intraocular pressure and central corneal thickness using Haplotype reference consortium imputations. We performed a multi-trait analysis of ONH parameters cup area, disc area and vertical cup-disc ratio. We uncover new variants; rs11158547 in PPP1R36-PLEKHG3 and rs1028727 near SERPINE3 at genome-wide significance that replicate in independent Asian cohorts imputed to 1000 Genomes. At this point, validation of these variants in POAG cohorts is hampered by the high degree of heterogeneity. Our results show that multi-trait analysis is a valid approach to identify novel pleiotropic variants for ONH
Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error.
Corneal curvature, a highly heritable trait, is a key clinical endophenotype for myopia - a major cause of visual impairment and blindness in the world. Here we present a trans-ethnic meta-analysis of corneal curvature GWAS in 44,042 individuals of Caucasian and Asian with replication in 88,218 UK Biobank data. We identified 47 loci (of which 26 are novel), with population-specific signals as well as shared signals across ethnicities. Some identified variants showed precise scaling in corneal curvature and eye elongation (i.e. axial length) to maintain eyes in emmetropia (i.e. HDAC11/FBLN2 rs2630445, RBP3 rs11204213); others exhibited association with myopia with little pleiotropic effects on eye elongation. Implicated genes are involved in extracellular matrix organization, developmental process for body and eye, connective tissue cartilage and glycosylation protein activities. Our study provides insights into population-specific novel genes for corneal curvature, and their pleiotropic effect in regulating eye size or conferring susceptibility to myopia
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Antineoplastic diterpene-benzoate macrolides from the Fijian red alga Callophycus serratus
Three diterpene-benzoate natural products, with novel carbon skeletons and an unusual proposed biosynthesis, were isolated from extracts of the Fijian red alga Callophycus serratus and identified by a combination of X-ray crystallographic, NMR, and mass spectral analyses. Bromophycolide A (1) displayed cytotoxicity against several human tumor cell lines via specific apoptotic cell death. This represents the first discovery of natural products incorporating a diterpene and benzoate skeleton into a macrolide system
Novel antineoplastic diterpene-benzoates from the Fijian red alga Callophycus serratus
Red macroalgae are well-known for the production of brominated metabolites, including terpenoids and phenols, yet some taxa within the Rhodophyta remain relatively unstudied. Herein, we report the discovery of unusual diterpene-benzoate natural products representing three novel carbon skeletons, from the red alga Callophycus serratus collected in Fiji. Included among the new compounds were 15- and 16-membered macrolides as well as non-macrocyclic diterpene-benzoic acid structural motifs, all apparently sharing the same 27-carbon biosynthetic precursor. Biological activities of these compounds included moderate antibacterial, antiviral, and antineoplastic effects via specific apoptotic cell death