43 research outputs found

    Remnants of an ancient forest provide ecological context for Early Miocene fossil apes

    Get PDF
    The lineage of apes and humans (Hominoidea) evolved and radiated across Afro-Arabia in the early Neogene during a time of global climatic changes and ongoing tectonic processes that formed the East African Rift. These changes probably created highly variable environments and introduced selective pressures influencing the diversification of early apes. However, interpreting the connection between environmental dynamics and adaptive evolution is hampered by difficulties in locating taxa within specific ecological contexts: time-averaged or reworked deposits may not faithfully represent individual palaeohabitats. Here we present multiproxy evidence from Early Miocene deposits on Rusinga Island, Kenya, which directly ties the early ape Proconsul to a widespread, dense, multistoried, closed-canopy tropical seasonal forest set in a warm and relatively wet, local climate. These results underscore the importance of forested environments in the evolution of early apes

    Laetoli Footprints Preserve Earliest Direct Evidence of Human-Like Bipedal Biomechanics

    Get PDF
    Background Debates over the evolution of hominin bipedalism, a defining human characteristic, revolve around whether early bipeds walked more like humans, with energetically efficient extended hind limbs, or more like apes with flexed hind limbs. The 3.6 million year old hominin footprints at Laetoli, Tanzania represent the earliest direct evidence of hominin bipedalism. Determining the kinematics of Laetoli hominins will allow us to understand whether selection acted to decrease energy costs of bipedalism by 3.6 Ma. Methodology/Principal Findings Using an experimental design, we show that the Laetoli hominins walked with weight transfer most similar to the economical extended limb bipedalism of humans. Humans walked through a sand trackway using both extended limb bipedalism, and more flexed limb bipedalism. Footprint morphology from extended limb trials matches weight distribution patterns found in the Laetoli footprints. Conclusions These results provide us with the earliest direct evidence of kinematically human-like bipedalism currently known, and show that extended limb bipedalism evolved long before the appearance of the genus Homo. Since extended-limb bipedalism is more energetically economical than ape-like bipedalism, energy expenditure was likely an important selection pressure on hominin bipeds by 3.6 Ma

    Scythes, sickles and other blades: Defining the diversity of pectoral fin morphotypes in Pachycormiformes

    Get PDF
    The traditional terminology of 'scythe' or 'sickle' shaped is observed to be flawed as an effective descriptor for pectoral fin shape in pachycormids. The diversity of pachycormid pectoral fin shapes is assessed across the 14 recognised genera that preserve complete pectoral fins, and improved terms are defined to more effectively describe their form, supported by anatomical observation and aspect ratio analysis of individual fins, and corroborated by landmark analysis. Three clear and distinct pectoral fin structural morphotypes emerge (falceform, gladiform, falcataform), reflecting a diversity of pachycormid lifestyles throughout the Mesozoic, from agile pursuit predator to slow-cruising suspension feeder

    Snapshots of human anatomy, locomotion, and behavior from Late Pleistocene footprints at Engare Sero, Tanzania

    Full text link
    Fossil hominin footprints preserve data on a remarkably short time scale compared to most other fossil evidence, offering snapshots of organisms in their immediate ecological and behavioral contexts. Here, we report on our excavations and analyses of more than 400 Late Pleistocene human footprints from Engare Sero, Tanzania. The site represents the largest assemblage of footprints currently known from the human fossil record in Africa. Speed estimates show that the trackways reflect both walking and running behaviors. Estimates of group composition suggest that these footprints were made by a mixed-sex and mixed-age group, but one that consisted of mostly adult females. One group of similarly oriented trackways was attributed to 14 adult females who walked together at the same pace, with only two adult males and one juvenile accompanying them. In the context of modern ethnographic data, we suggest that these trackways may capture a unique snapshot of cooperative and sexually divided foraging behavior in Late Pleistocene humans

    Neoliberal Penality: A Brief Genealogy

    Full text link

    Continuity in Secession: The Case of the Confederate Constitution

    Full text link

    On Human Evolution

    No full text

    Data from: The evolution of cranial form and function in theropod dinosaurs: insights from geometric morphometrics

    No full text
    Theropod dinosaurs, an iconic clade of fossil species including Tyrannosaurus and Velociraptor, developed a great diversity of body size, skull form, and feeding habits over their 160+ million year evolutionary history. Here we utilise geometric morphometrics to study broad patterns in theropod skull shape variation, and compare the distribution of taxa in cranial morphospace (form) to both phylogeny and quantitative metrics of biting behaviour (function). We find that theropod skulls primarily differ in relative anteroposterior length and snout depth, and to a lesser extent in orbit size and depth of the cheek region, and oviraptorosaurs deviate most strongly from the “typical” and ancestral theropod morphologies. Non-carnivorous taxa generally fall out in distinct regions of morphospace and exhibit greater overall disparity than carnivorous taxa, whereas large-bodied carnivores independently converge on the same region of morphospace. The distribution of taxa in morphospace is strongly correlated with phylogeny, but only weakly correlated with functional biting behavior. These results imply that phylogeny, not biting function, was the major determinant of theropod skull shape
    corecore