13 research outputs found
Cancer incidence among children and young adults who have undergone x-ray guided cardiac catheterization procedures
Children and young adults with heart disease appear to be at increased risk of developing cancer, although the reasons for this are unclear. A cohort of 11,270 individuals, who underwent cardiac catheterizations while aged B 22 years in the UK, was established from hospital records. Radiation doses from cardiac catheterizations and CT scans were estimated. The cohort was matched with the NHS Central Register and NHS Transplant Registry to determine cancer incidence and transplantation status. Standardized incidence ratios (SIR) with associated confidence intervals (CI) were calculated. The excess relative risk (ERR) of lymphohaematopoietic neoplasia was also calculated using Poisson regression. The SIR was raised for all malignancies (2.32, 95% CI 1.65, 3.17), lymphoma (8.34, 95% CI 5.22, 12.61) and leukaemia (2.11, 95% CI 0.82, 4.42). After censoring transplant recipients, post-transplant, the SIR was reduced to 0.90 (95% CI 0.49, 1.49) for all malignancies. All lymphomas developed post-transplant. The SIR for all malignancies developing 5 years from the first cardiac catheterization (2 years for leukaemia/lymphoma) remained raised (3.01, 95% CI 2.09, 4.19) but was again reduced after censoring transplant recipients (0.98, 95% CI 0.48, 1.77). The ERR per mGy bone marrow dose for lympho-haematopoietic neoplasia was reduced from 0.541 (95% CI 0.104, 1.807) to 0.018 (95% CI - 0.002, 0.096) where transplantation status was accounted for as a time-dependent background risk factor. In conclusion, transplantation appears to be a large contributor to elevated cancer rates in this patient group. This is likely to be mainly due to associated immunosuppression, however, radiation exposure may also be a contributing factor
Ionising radiation as a risk factor for lymphoma: a review
The ability of ionising radiation to induce lymphoma is unclear. Here, we present a narrative review of epidemiological evidence of the risk of lymphoma, including chronic lymphocytic leukaemia (CLL) and multiple myeloma (MM), among various exposed populations including atomic bombing survivors, industrial and medical radiation workers, and individuals exposed for medical purposes. Overall, there is a suggestion of a positive dose-dependent association between radiation exposure and lymphoma. The magnitude of this association is highly imprecise, however, with wide confidence intervals frequently including zero risk. External comparisons tend to show similar incidence and mortality rates to the general population. Currently, there is insufficient information on the impact of age at exposure, high versus low linear energy transfer radiation, external versus internal or acute versus chronic exposures. Associations are stronger for males than females, and stronger for non-Hodgkin lymphoma and MM than for Hodgkin lymphoma, while the risk of radiation-induced CLL may be non-existent. This broad grouping of diverse diseases could potentially obscure stronger associations for certain subtypes, each with a different cell of origin. Additionally, the classification of malignancies as leukaemia or lymphoma may result in similar diseases being analysed separately, while distinct diseases are analysed in the same category. Uncertainty in cell of origin means the appropriate organ for dose response analysis is unclear. Further uncertainties arise from potential confounding or bias due to infectious causes and immunosuppression. The potential interaction between radiation and other risk factors is unknown. Combined, these uncertainties make lymphoma perhaps the most challenging malignancy to study in radiation epidemiology
Cancer effects of low to moderate doses of ionizing radiation in young people with cancer-predisposing conditions: a systematic review
Moderate to high doses of ionizing radiation (IR) are known to increase the risk of cancer, particularly following childhood exposure. Concerns remain regarding risks from lower doses and the role of cancer-predisposing factors (CPF; genetic disorders, immunodeficiency, mutations/variants in DNA damage detection or repair genes) on radiation-induced cancer (RIC) risk. We conducted a systematic review of evidence that CPFs modify RIC risk in young people. Searches were performed in PubMed, Scopus, Web of Science, and EMBASE for epidemiologic studies of cancer risk in humans (<25 years) with a CPF, exposed to low-moderate IR. Risk of bias was considered. Fifteen articles focusing on leukemia, lymphoma, breast, brain, and thyroid cancers were included. We found inadequate evidence that CPFs modify the risk of radiation-induced leukemia, lymphoma, brain/central nervous system, and thyroid cancers and limited evidence that BRCA mutations modify radiation-induced breast cancer risk. Heterogeneity was observed across studies regarding exposure measures, and the numbers of subjects with CPFs other than BRCA mutations were very small. Further studies with more appropriate study designs are needed to elucidate the impact of CPFs on RIC. They should focus either on populations of carriers of specific gene mutations or on common susceptible variants using polygenic risk scores.This work was performed within the MEDIRAD project, which has received funding from the Euratom research and training program 2014–2018 under grant agreement No 755523
Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults
Over one million European children undergo computed tomography (CT) scans annually. Although moderate- to high-dose ionizing radiation exposure is an established risk factor for hematological malignancies, risks at CT examination dose levels remain uncertain. Here we followed up a multinational cohort (EPI-CT) of 948,174 individuals who underwent CT examinations before age 22 years in nine European countries. Radiation doses to the active bone marrow were estimated on the basis of body part scanned, patient characteristics, time period and inferred CT technical parameters. We found an association between cumulative dose and risk of all hematological malignancies, with an excess relative risk of 1.96 (95% confidence interval 1.10 to 3.12) per 100 mGy (790 cases). Similar estimates were obtained for lymphoid and myeloid malignancies. Results suggest that for every 10,000 children examined today (mean dose 8 mGy), 1-2 persons are expected to develop a hematological malignancy attributable to radiation exposure in the subsequent 12 years. Our results strengthen the body of evidence of increased cancer risk at low radiation doses and highlight the need for continued justification of pediatric CT examinations and optimization of doses.This work was partly supported by the European Community’s Seventh Framework Programme (FP7/20011-2017) (grant number 269912 - EPI-CT: Epidemiological study to quantify risks for paediatric computerised tomography and to optimise doses) (A.K., E.C., M.H., M.-O.B., A.J., H.O., H.E., C.J., M.B., M.K. and K.K.). In Spain, this study was partially supported by grants (E.C. and M.B.B.) from the Instituto de Salud Carlos III-ISCIII from the Spanish Government (reference: PI16/00120) cofunded by FEDER funds/European Regional Development Fund (ERDF)—a way to build Europe. Additionally, complementary Spanish funding was received from the Consejo de Seguridad Nuclear (E.C.) and M.B.B. was the recipient of a fellowship of the Centro de InvestigaciĂłn BiomĂ©dica en Red de EpidemiologĂa y Salud PĂşblica (CIBERESP) for a short stay abroad at Newcastle University. ISGlobal also acknowledges support from the grant CEX2018-000806-S funded by MCIN/AEI/10.13039/501100011033, from the Generalitat de Catalunya through the CERCA Program and from the Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat of Catalonia through AGAUR (the Catalan Agency for Management of University and Research Grants) (Project 2017 SGR 1487) to EC
No Association between Radiation Dose from Pediatric CT Scans and Risk of Subsequent Hodgkin Lymphoma
International audienceAbstract Background: We examined the relationship between estimated radiation dose from CT scans and subsequent Hodgkin lymphoma in the UK pediatric CT scans cohort. Methods: A retrospective, record linkage cohort included patients ages 0 to 21 years who underwent CT scans between 1980 and 2002 and were followed up for cancer or death until 2008. Poisson regression analysis was used to evaluate the relationship between estimated radiation dose (lagged by 2 years) and incident Hodgkin lymphoma diagnosed at least 2 years after the first CT scan. Results: There were 65 incident cases of Hodgkin lymphoma in the cohort of 178,601 patients. Neither estimated red bone marrow dose nor mean lymphocyte dose from CT scans was clearly associated with an increased risk of Hodgkin lymphoma (RR for 20+ mGy vs. <5 mGy = 0.92 (0.38–2.22) Ptrend > 0.5 and 1.44 (0.60–3.48) Ptrend > 0.5), respectively. Conclusions: Radiation exposure from pediatric CT scans 2 or more years before diagnosis was not associated with Hodgkin lymphoma in this large UK cohort. Impact: These findings are consistent with the majority of previous studies, which do not support a link between ionizing radiation and Hodgkin lymphoma. The results contrast our previous positive findings in this cohort for brain tumors and leukemia, both of which are known to be strongly linked to radiation exposure during childhood. Cancer Epidemiol Biomarkers Prev; 26(5); 804–6. ©2017 AACR
Cohort Profile:the EPI-CT study: a European pooled epidemiological study to quantify the risk of radiation-induced cancer from paediatric CT
International audience•The multinational EPI-CT study was set-up in 2011 to provide direct estimates of risk of solid tumours and leukaemia among children and young adults who underwent computed tomography (CT) scanning and to consolidate the scientific basis for optimization of paediatric CT protocols and patient protection.•Under a common protocol, cohort studies were conducted in Belgium, Denmark, France, Germany, the Netherlands, Norway, Spain, Sweden and the United Kingdom, coordinated by the International Agency for Research on Cancer (IARC). •The study recruited a total of about 950,000 patients having undergone at least one CT-scan before the age of 22 years. A total of 8.7 million person-years of incidence follow-up were accrued between 1977 and 2014. Cohort members were followed up passively through linkage with population-based cancer and mortality registries. A methodology was developed to reconstruct individual organ doses and estimate associated uncertainties, using data available in electronic archiving systems of the radiology departments of participating hospitals. Description of the cohort and analysis of mortality risk are presented here.•Proposals for possible collaboration in further analyses of the data should be addressed to Dr. Ausrele Kesminiene ([email protected]) and will be reviewed by the EPI-CT steering committe