13 research outputs found

    OMEGA–OSIRIS mapping of emission-line galaxies in A901/2:IV. Extinction of star formation estimators with inclination

    Get PDF
    We study the effect of inclination on the apparent brightness of star-forming galaxies in spectral passbands that are commonly used as star formation indicators. As diagnostics we use mass-to-light ratios in three passbands: the UV continuum at 280 nm, the Hα emission line, and the FIR 24μ band. We include a study of inclination trends in the IR/UV ratio (‘IRX’) and the IR/Hα ratio. Our sample comprises a few hundred galaxies from the region around the clusters Abell 901/902 with deep data and inclinations measured from outer discs in Hubble Space Telescope images. As a novelty, the Hα- and separately the N ii emission are measured by tunable-filter imaging and encompass galaxies in their entirety. At galaxy stellar masses above log M*/M⊙ ≳ 10 we find trends in the UV and Hα mass-to-light ratio that suggest an inclination-induced attenuation from face-on to edge-on of ∼1 mag and ∼0.7 mag in UV and Hα, respectively, implying that star formation rates of edge-on galaxies would be underestimated by ∼2.5 × in UV and ∼2 × in Hα. We find the luminosities in UV and Hα to be well correlated, but the optical depth of diffuse dust that causes inclination dependence appears to be lower for stars emitting at 280 nm than for gas clouds emitting Balmer lines. For galaxies with log M*/M⊙ ≲ 9.7, we find no measurable effect at >0.1 mag. The absence of an inclination dependence at 24μ confirms that the average galaxy is optically thin in the FIR

    The distribution of stellar orbits in eagle galaxies – the effect of mergers, gas accretion, and secular evolution

    Get PDF
    The merger history of a galaxy is thought to be one of the major factors determining its internal dynamics, with galaxies having undergone different types or mergers (e.g. dry, minor, or major mergers) predicted to show different dynamical properties. We study the instantaneous orbital distribution of galaxies in the EAGLE simulation, colouring the orbits of the stellar particles by their stellar age, in order to understand whether stars form in particular orbits (e.g. in a thin or thick disc). We first show that EAGLE reproduces well the observed stellar mass fractions in different stellar orbital families as a function of stellar mass and spin parameter at z = 0. We find that the youngest stars reside in a thin disc component that can extend to the very inner regions of galaxies, and that older stars have warmer orbits, with the oldest ones showing orbits consistent with both hot and counter-rotating classifications, which is consistent with the trend found in the Milky Way and other disc galaxies. We also show that counter-rotating orbits trace galaxy mergers – in particular dry mergers, and that in the absence of mergers, counter-rotating orbits can also be born from highly misaligned gas accretion that leads to star formation

    Tropical coastal habitats as surrogates of fish community structure, grazing, and fisheries value

    Get PDF
    Habitat maps are frequently invoked as surrogates of biodiversity to aid the design of networks of marine reserves. Maps are used to maximize habitat heterogeneity in reserves because this is likely to maximize the number of species protected. However, the technique's efficacy is limited by intra-habitat variability in the species present and their abundances. Although communities are expected to vary among patches of the same habitat, this variability is poorly documented and rarely incorporated into reserve planning. To examine intra-habitat variability in coral-reef fishes, we generated a data set from eight tropical coastal habitats and six islands in the Bahamian archipelago using underwater visual censuses. Firstly, we provide further support for habitat heterogeneity as a surrogate of biodiversity as each predefined habitat type supported a distinct assemblage of fishes. Intrahabitat variability in fish community structure at scales of hundreds of kilometers (among islands) was significant in at least 75% of the habitats studied, depending on whether presence/absence, density, or biomass data were used. Intra-habitat variability was positively correlated with the mean number of species in that habitat when density and biomass data were used. Such relationships provide a proxy for the assessment of intra-habitat variability when detailed quantitative data are scarce. Intra-habitat variability was examined in more detail for one habitat (forereefs visually dominated by Montastraea corals). Variability in community structure among islands was driven by small, demersal families (e. g., territorial pomacentrid and labrid fishes). Finally, we examined the ecological and economic significance of intra-habitat variability in fish assemblages on Montastraea reefs by identifying how this variability affects the composition and abundances of fishes in different functional groups, the key ecosystem process of parrotfish grazing, and the ecosystem service of value of commercially important finfish. There were significant differences in a range of functional groups and grazing, but not fisheries value. Variability at the scale of tens of kilometers (among reefs around an island) was less than that among islands. Caribbean marine reserves should be replicated at scales of hundreds of kilometers, particularly for species-rich habitats, to capture important intra-habitat variability in community structure, function, and an ecosystem process

    The SAMI Galaxy Survey: a statistical approach to an optimal classification of stellar kinematics in galaxy surveys

    Full text link
    Large galaxy samples from multi-object IFS surveys now allow for a statistical analysis of the z~0 galaxy population using resolved kinematics. However, the improvement in number statistics comes at a cost, with multi-object IFS survey more severely impacted by the effect of seeing and lower S/N. We present an analysis of ~1800 galaxies from the SAMI Galaxy Survey and investigate the spread and overlap in the kinematic distributions of the spin parameter proxy λRe\lambda_{Re} as a function of stellar mass and ellipticity. For SAMI data, the distributions of galaxies identified as regular and non-regular rotators with \textsc{kinemetry} show considerable overlap in the λRe\lambda_{Re}-εe\varepsilon_e diagram. In contrast, visually classified galaxies (obvious and non-obvious rotators) are better separated in λRe\lambda_{Re} space, with less overlap of both distributions. Then, we use a Bayesian mixture model to analyse the observed λRe\lambda_{Re}-log(M/M)\log(M_*/M_{\odot}) distribution. Below log(M/M)10.5\log(M_{\star}/M_{\odot})\sim10.5, a single beta distribution is sufficient to fit the complete λRe\lambda_{Re} distribution, whereas a second beta distribution is required above log(M/M)10.5\log(M_{\star}/M_{\odot})\sim10.5 to account for a population of low-λRe\lambda_{Re} galaxies. While the Bayesian mixture model presents the cleanest separation of the two kinematic populations, we find the unique information provided by visual classification of kinematic maps should not be disregarded in future studies. Applied to mock-observations from different cosmological simulations, the mixture model also predicts bimodal λRe\lambda_{Re} distributions, albeit with different positions of the λRe\lambda_{Re} peaks. Our analysis validates the conclusions from previous smaller IFS surveys, but also demonstrates the importance of using kinematic selection criteria that are dictated by the quality of the observed or simulated data.Comment: 30 pages and 17 figures, accepted for publication in MNRAS. Abstract abridged for Arxiv. The key figures of the paper are: 3, 7, 8, and 1

    The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes

    No full text
    Caribbean coral reef habitats, seagrass beds and mangroves provide important goods and services both individually and through functional linkages. A range of anthropogenic factors are threatening the ecological and economic importance of these habitats and it is vital to understand how ecosystem processes vary across seascapes. A greater understanding of processes will facilitate further insight into the effects of disturbances and assist with assessing management options. Despite the need to study processes across whole seascapes, few spatially explicit ecosystem-scale assessments exist. We review the empirical literature to examine the role of different habitat types for a range of processes. The importance of each of 10 generic habitats to each process is defined as its "functional value" (none, low, medium or high), quantitatively derived from published data wherever possible and summarised in a single figure. This summary represents the first time the importance of habitats across an entire Caribbean seascape has been assessed for a range of processes. Furthermore, we review the susceptibility of each habitat to disturbances to investigate spatial patterns that might affect functional values

    The diverse nature and formation paths of slow rotator galaxies in the EAGLE simulations

    Get PDF
    International audienceWe use a sample of z = 0 galaxies visually classified as slow rotators (SRs) in the EAGLE hydrodynamical simulations to explore the effect of galaxy mergers on their formation, characterize their intrinsic galaxy properties, and study the connection between quenching and kinematic transformation. SRs that have had major or minor mergers (mass ratios ≥0.3 and 0.1-0.3, respectively) tend to have a higher triaxiality parameter and ex-situ stellar fractions than those that had exclusively very minor mergers or formed in the absence of mergers ('no-merger' SRs). No-merger SRs are more compact, have lower black hole-to-stellar mass ratios and quenched later than other SRs, leaving imprints on their z = 0 chemical composition. For the vast majority of SRs we find that quenching, driven by active galactic nuclei feedback, precedes kinematic transformation, except for satellite SRs, in which these processes happen in tandem. However, in ≍50 per cent of these satellites, satellite-satellite mergers are responsible for their SR fate, while environment (i.e. tidal field and interactions with the central) can account for the transformation in the rest. By splitting SRs into kinematic sub-classes, we find that flat SRs prefer major mergers; round SRs prefer minor or very minor mergers; prolate SRs prefer gas-poor mergers. Flat and prolate SRs are more common among satellites hosted by massive haloes (1013.6M 10^{13.6}\, \rm M_{\odot }) and centrals of high masses (M1010.5MM_{\star } 10^{10.5}\, \rm M_{\odot }). Although EAGLE galaxies display kinematic properties that broadly agree with observations, there are areas of disagreement, such as inverted stellar age and velocity dispersion profiles. We discuss these and how upcoming simulations can solve them

    High vulnerability of ecosystem function and services to diversity loss in Caribbean coral reefs

    No full text
    Determining how ecosystem function and services are related to diversity is necessary for predicting the consequences of diversity loss and for setting goals and priorities for marine conservation. The consequences of biodiversity loss for ecosystem functions and services depend on the level of functional redundancy - the number of species with similar ecological functional traits. Using field data on fish assemblages from 199 coral reef and lagoon sites from six islands, and on local fisheries from four islands in The Bahamas, we examined levels of functional diversity and redundancy within these assemblages and determined how fish biomass and local fisheries catches vary with local diversity. A majority of functional groups contain few species, suggesting that these assemblages have limited functional redundancy. Most also include species targeted by local fisheries, thus fishing has the potential to broadly impact food webs. Comparisons between a large marine reserve and fished reefs confirm that fishing significantly reduces functional redundancy and removes whole functional groups. Positive exponential relationships of fish biomass and fisheries catches with species and functional diversity highlight that even small declines in biodiversity may result in large reductions in secondary production and seafood provision. Taken together, these results indicate that Caribbean fish assemblages have low functional redundancy and high vulnerability of ecosystem functions and services to diversity loss, and that protection of multi-species assemblages is needed to maintain functions and services
    corecore