141 research outputs found

    Trophonella (Gastropoda: Muricidae), a New Genus from Antarctic Waters, with the Description of a New Species

    Get PDF
    The new genus Trophonella is described from the outer shelf and upper continental slope of Antarcticaand islands within the Antarctic Convergence. Four previously known species that had been attributed to the genusTrophon (Trophon scotianus Powell, 1951; T. echinolamellatus Powell, 1951; T. enderbyensis Powell, 1958; and T.eversoni Houart, 1997) are included in Trophonella, as is one new species (Trophonella rugosolamellata) describedherein. Trophonella resembles Trophon in gross shell morphology: the members of both genera have large, globoseshells, paucispiral protoconchs, prominent axial lamellae, and short siphonal canals. Trophonella differs fromTrophon in having shells with evenly rounded whorls that lack a well-defined shoulder; rachidian teeth withdistinctive, broadly triangular central cusps, but that lack the marginal cusps of Trophon; characteristic sphericalaccessory salivary glands; and a circumpapillar fold on the penis that is absent in Trophon. Relationships of thegenera Trophon and Trophonella, as well as of the subfamily Trophoninae are reexamined by supplementing the datamatrix of Kool (1993b, Table 3) with data for additional taxa. Results support the segregation of Trophonella fromTrophon at the generic level. Based on the relationships of the type species of their respective nominotypical genera,Trophoninae is either the sister taxon of a narrowly circumscribed Ocenebrinae, or both are part of a larger clade. Abetter resolved phylogeny containing a much broader sampling of the more than 50 genus-level taxa that have beenattributed to these two subfamilies will be required in order to delineate more precisely the membership of the cladeand to identify its diagnostic synapomorphies.Fil: Harasewych, M. G.. National Museum of Natural History; Estados UnidosFil: Pastorino, Roberto Santiago Guido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”; Argentin

    <i>Bayerotrochus belauensis</i>, a new species of pleurotomariid from the Palau Islands, western Pacific (Gastropoda: Pleurotomariidae)

    Get PDF
    A new pleurotomariid species, Bayerotrochus belauensis new species, collected from the Palau Islands, western Pacific, is described and illustrated. This new species is most similar in shell morphology to B. teramachii (Kuroda, 1955), from which it may be distinguished by its thinner, lighter shell with a taller, more stepped spire and lack of pronounced spiral sculpture along the shell base. Molecular data (COI) show B. belauensis new species to be more closely related to B. boucheti from New Caledonia and B. delicatus from Yap, than to B. teramachii. Bayerotrochus boucheti (Anseeuw and Poppe, 2001) differs in having a broader, more conical spire, a more depressed aperture, and a more darkly pigmented shell with spiral sculpture on the shell base. The recently described B. delicatus S.-P. Zhang, S.Q. Zhang, and Wei, 2016 is easily distinguished by its much smaller size and distinctive shell profile

    A critical review of Antarctic Conoidea (Neogastropoda)

    Get PDF
    International audienc

    The Genus Cerion (Gastropoda: Cerionidae) in the Florida Keys.

    Get PDF
    The systematic relationships and phylogeography of Cerion incanum, the only species of Cerion native to the Florida Keys, are reviewed based on partial sequences of the mitochondrial COI and 16S genes derived from 18 populations spanning the range of this species and including the type localities of all four described subspecies. Our samples included specimens of Cerion casablancae, a species introduced to Indian Key in 1912, and a population of C. incanum x C. casablancae hybrids descended from a population of C. casablancae introduced onto Bahia Honda Key in the same year. Molecular data did not support the partition of C. incanum into subspecies, nor could populations be apportioned reliably into subspecies based on morphological features used to define the subspecies. Phylogenetic analyses affirmed the derived relationship of C. incanum relative to other cerionids, and indicated a Bahamian origin for the Cerion fauna of southern Florida. Relationships among the populations throughout the Keys indicate that the northernmost populations, closest to the Tomeu paleoislands that had been inhabited by Cerion petuchi during the Calabrian Pleistocene, are the oldest. The range of Cerion incanum expanded as the archipelago that is the Florida Keys was formed since the lower Tarantian Pleistocene by extension from the northeast to the southwest, with new islands populated as they were formed. The faunas of the High Coral Keys in the northeast and the Oölite Keys in the southwest, both with large islands that host multiple discontinuous populations of Cerion, are each composed of well supported clades that are characterized by distinctive haplotypes. In contrast, the fauna of the intervening Low Coral Keys consist of a heterogeneous series of populations, some with haplotypes derived from the High Coral Keys, others from the Oölite Keys. Individuals from the C. incanum x C. casablancae hybrid population inhabiting the southeastern coast of Bahia Honda Key were readily segregated based on their mitogenome lineage, grouping either with C. incanum or with C. casablancae from Indian Key. Hybrids with C. casablancae mitogenomes had haplotypes that were more divergent from their parent mitogenome than were hybrids with C. incanum mitogenomes

    Molluscan mega-hemocyanin: an ancient oxygen carrier tuned by a ~550 kDa polypeptide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The allosteric respiratory protein hemocyanin occurs in gastropods as tubular di-, tri- and multimers of a 35 × 18 nm, ring-like decamer with a collar complex at one opening. The decamer comprises five subunit dimers. The subunit, a 400 kDa polypeptide, is a concatenation of eight paralogous functional units. Their exact topology within the quaternary structure has recently been solved by 3D electron microscopy, providing a molecular model of an entire didecamer (two conjoined decamers). Here we study keyhole limpet hemocyanin (KLH2) tridecamers to unravel the exact association mode of the third decamer. Moreover, we introduce and describe a more complex type of hemocyanin tridecamer discovered in fresh/brackish-water cerithioid snails (<it>Leptoxis</it>, <it>Melanoides</it>, <it>Terebralia</it>).</p> <p>Results</p> <p>The "typical" KLH2 tridecamer is partially hollow, whereas the cerithioid tridecamer is almost completely filled with material; it was therefore termed "mega-hemocyanin". In both types, the staggering angle between adjoining decamers is 36°. The cerithioid tridecamer comprises two typical decamers based on the canonical 400 kDa subunit, flanking a central "mega-decamer" composed of ten unique ~550 kDa subunits. The additional ~150 kDa per subunit substantially enlarge the internal collar complex. Preliminary oxygen binding measurements indicate a moderate hemocyanin oxygen affinity in <it>Leptoxis </it>(p50 ~9 mmHg), and a very high affinity in <it>Melanoides </it>(~3 mmHg) and <it>Terebralia </it>(~2 mmHg). Species-specific and individual variation in the proportions of the two subunit types was also observed, leading to differences in the oligomeric states found in the hemolymph.</p> <p>Conclusions</p> <p>In cerithioid hemocyanin tridecamers ("mega-hemocyanin") the collar complex of the central decamer is substantially enlarged and modified. The preliminary O<sub>2 </sub>binding curves indicate that there are species-specific functional differences in the cerithioid mega-hemocyanins which might reflect different physiological tolerances of these gill-breathing animals. The observed differential expression of the two subunit types of mega-hemocyanin might allow individual respiratory acclimatization. We hypothesize that mega-hemocyanin is a key character supporting the adaptive radiation and invasive capacity of cerithioid snails.</p

    The role of taxonomic expertise in interpretation of metabarcoding studies

    Get PDF
    Abstract The performance of DNA metabarcoding approaches for characterizing biodiversity can be influenced by multiple factors. Here, we used morphological assessment of taxa in zooplankton samples to develop a large barcode database and to assess the congruence of taxonomic identification with metabarcoding under different conditions. We analysed taxonomic assignment of metabarcoded samples using two genetic markers (COI, 18S V1–2), two types of clustering into molecular operational taxonomic units (OTUs, ZOTUs), and three methods for taxonomic assignment (RDP Classifier, BLASTn to GenBank, BLASTn to a local barcode database). The local database includes 1042 COI and 1108 18S (SSU) barcode sequences, and we added new high-quality sequences to GenBank for both markers, including 109 contributions at the species level. The number of phyla detected and the number of taxa identified to phylum varied between a genetic marker and among the three methods used for taxonomic assignments. Blasting the metabarcodes to the local database generated multiple unique contributions to identify OTUs and ZOTUs. We argue that a multi-marker approach combined with taxonomic expertise to develop a curated, vouchered, local barcode database increases taxon detection with metabarcoding, and its potential as a tool for zooplankton biodiversity surveys

    Expanding dispersal studies at hydrothermal vents through species identification of cryptic larval forms

    Get PDF
    Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Marine Biology 157 (2010): 1049-1062, doi:10.1007/s00227-009-1386-8.The rapid identification of hydrothermal vent-endemic larvae to the species level is a key limitation to understanding the dynamic processes that control the abundance and distribution of fauna in such a patchy and ephemeral environment. Many larval forms collected near vents, even those in groups such as gastropods that often form a morphologically distinct larval shell, have not been identified to species. We present a staged approach that combines morphological and molecular identification to optimize the capability, efficiency, and economy of identifying vent gastropod larvae from the northern East Pacific Rise (NEPR). With this approach, 15 new larval forms can be identified to species. A total of 33 of the 41 gastropod species inhabiting the NEPR, and 26 of the 27 gastropod species known to occur specifically in the 9° 50’ N region, can be identified to species. Morphological identification efforts are improved by new protoconch descriptions for Gorgoleptis spiralis, Lepetodrilus pustulosus, Nodopelta subnoda, and Echinopelta fistulosa. Even with these new morphological descriptions, the majority of lepetodrilids and peltospirids require molecular identification. Restriction fragment length polymorphism digests are presented as an economical method for identification of five species of Lepetodrilus and six species of peltospirids. The remaining unidentifiable specimens can be assigned to species by comparison to an expanded database of 18S ribosomal DNA. The broad utility of the staged approach was exemplified by the revelation of species-level variation in daily planktonic samples and the identification and characterization of egg capsules belonging to a conid gastropod Gymnobela sp. A. The improved molecular and morphological capabilities nearly double the number of species amenable to field studies of dispersal and population connectivity.Funding was provided by as Woods Hole Oceanographic Institution Deep Ocean Exploration Institute grant to L.M and S. Beaulieu, National Science Foundation grants OCE-0424953, OCE-9712233, and OCE-9619605 to L.M, OCE-0327261 to T.S., and OCE-0002458 to K. Von Damm, and a National Defense Science and Engineering Graduate fellowship to D.A

    Differentiation of high-latitude and polar marine faunas in a greenhouse world

    Get PDF
    Aim The aim was to investigate those factors that influenced the differentiation of high-latitude and polar marine faunas on both ecological and evolutionary time-scales. Can a focus on a greenhouse world provide some important clues? Location World-wide, but with particular emphasis on the evolution of Antarctic marine faunas. Time period Early Cenozoic era and present day. Major taxa studied Mollusca, especially Neogastropoda. Methods The Early Cenozoic global radiation of one of the largest extant marine clades, Neogastropoda, was examined, and detailed comparisons were made between two tropical localities and Antarctica. High- to low-latitude faunal differentiation was assessed using Sørensen's dissimilarity index, and component species in each of the three faunas were assigned to 29 families and family groups. Relative diversity distributions were fitted to these three faunas and two modern ones to assess the contrast in evenness between high- and low-latitude assemblages. Results By the Middle Eocene, a distinct high-latitude neogastropod fauna had evolved in Antarctica. In addition, the distribution of species within families in this fauna is statistically significantly less even than that in the tropics. Indeed, there is no detectable difference in the scale of this separation from that seen today. Exactly as in the modern fauna, Middle Eocene Antarctic neogastropods are dominated by a small number of trophic generalist groups. Main conclusions As the hyperdiverse Neogastropoda clade radiated globally through the Early Cenozoic, it differentiated into distinct high- and low-latitude components. The fact that it did so in a greenhouse world strongly suggests that something else besides temperature was involved in this process. The predominance of generalist feeding types in the Antarctic fossil faunas is linked to the phenomenon of a seasonally pulsed food supply, exactly as it is today. Seasonality in primary productivity may act as a fundamental control on the evolution of large-scale biodiversity pattern

    Pterynotiis xenos, a new species of muricid from off northern Jamaica (Mollusca: Gastropoda)

    No full text
    Volume: 95Start Page: 639End Page: 64

    Attenuiconus marileeae, a new species of cone (Gastropoda: Conidae: Puncticulinae) from Cura\uc3\ua7ao

    No full text
    Volume: 128Start Page: 55End Page: 5
    corecore