20 research outputs found

    Inter-annual and inter-specific differences in the drift of fish eggs and yolksac larvae in the North Sea: A biophysical modeling approach

    Get PDF
    We employed 3-D biophysical modeling and dispersion kernel analysis to explore inter-annual and inter-specific differences in the drift trajectories of eggs and yolksac larvae of plaice (Pleuronectes platessa), Atlantic cod (Gadus morhua), sprat (Sprattus sprattus) and horse mackerel (Trachurus trachurus) in the North Sea. In this region, these four species exhibit peak spawning during the boreal winter, late winter/early spring, late spring/early summer, and mid-summer respectively, but utilize the same spawning locations (our simulations included Dogger Bank, Southern Bight and the German Bight). Inter-annual differences in the temperature history, and an increase in the area of dispersion and final distribution at the end of the yolksac phase were more pronounced (and related to the North Atlantic Oscillation) for winter- and early spring-spawners compared to late spring/summer spawners. The progeny of the latter experienced the largest (up to 10-fold) inter-annual differences in drift distances, although absolute drift distances were modest (~2 to 30 km) when compared to those of the former (~ 20 to 130 km). Our results highlight the complex interplay that exists between the specific life history strategies of the different species and the impacts of the variability in (climate-driven) physical factors during the earliest life stages of marine fish. Resumen: Diferencias interanuales e interespecíficas en la deriva de huevos y larvas lecitotróficas en el mar Norte: Aproximación a través un modelo biofísico. – En este trabajo utilizamos un modelo 3-D físico-biológico y un análisis de dispersión del núcleo para investigar las diferencias interespecíficas e interanuales en las trayectorias de la deriva de huevos y larvas lecitotróficas de la solla (Pleuronectes platessa), el bacalao Atlántico (Gadus morhua), el espadín (Sprattus sprattus) y el jurel (Trachurus trachurus) en el Mar del Norte. En esta región, las especies estudiadas muestran distintos picos de distintos desoves en el tiempo: invierno boreal, invierno tardío/primavera temprana, primavera tardía/verano temprano y mitad del verano, respectivamente, aunque comparten las mismas zonas de desove. Las simulaciones efectuadas corresponden a tres de estas zonas: Dogger Bank, Southern Bight y German Bight. Los resultados mostraron diferencias interanuales en la temperatura experimentada por las larvas, en el área de dispersión y en el patrón de distribución al final del estadio lecitotrófico, que fueron más evidentes en el bacalao Atlántico, en comparacion con el espadín. Así mismo, estos factores estuvieron correlacionados con la Oscilación del Atlántico Norte. La progenie del espadín, además, mostró la mayor variación interanual en la distancia de dispersión, siendo hasta 10 veces mayor, aunque la distancia absoluta alcanzada fue relativamente modesta (~2-30 km) en comparación con la observada para el bacalao Atlántico (~20-130 km). Nuestros resultados subrayan la compleja interacción que existe, durante los estadios tempranos del desarrollo de peces marinos, entre las estrategias ecológica

    PREDICT identifies precipitating events associated with the clinical course of acutely decompensated cirrhosis

    Get PDF
    Background & Aims: Acute decompensation (AD) of cirrhosis may present without acute-on-chronic liver failure (ACLF) (ADNo ACLF), or with ACLF (AD-ACLF), defined by organ failure(s). Herein, we aimed to analyze and characterize the precipitants leading to both of these AD phenotypes. Methods: The multicenter, prospective, observational PREDICT study (NCT03056612) included 1,273 non-electively hospitalized patients with AD (No ACLF = 1,071; ACLF = 202). Medical history, clinical data and laboratory data were collected at enrolment and during 90-day follow-up, with particular attention given to the following characteristics of precipitants: induction of organ dysfunction or failure, systemic inflammation, chronology, intensity, and relationship to outcome. Results: Among various clinical events, 4 distinct events were precipitants consistently related to AD: proven bacterial infections, severe alcoholic hepatitis, gastrointestinal bleeding with shock and toxic encephalopathy. Among patients with precipitants in the AD-No ACLF cohort and the AD-ACLF cohort (38% and 71%, respectively), almost all (96% and 97%, respectively) showed proven bacterial infection and severe alcoholic hepatitis, either alone or in combination with other events. Survival was similar in patients with proven bacterial infections or severe alcoholic hepatitis in both AD phenotypes. The number of precipitants was associated with significantly increased 90day mortality and was paralleled by increasing levels of surrogates for systemic inflammation. Importantly, adequate first-line antibiotic treatment of proven bacterial infections was associated with a lower ACLF development rate and lower 90-day mortality. Conclusions: This study identified precipitants that are significantly associated with a distinct clinical course and prognosis in patients with AD. Specific preventive and therapeutic strategies targeting these events may improve outcomes in patients with decompensated cirrhosis. Lay summary: Acute decompensation (AD) of cirrhosis is characterized by a rapid deterioration in patient health. Herein, we aimed to analyze the precipitating events that cause AD in patients with cirrhosis. Proven bacterial infections and severe alcoholic hepatitis, either alone or in combination, accounted for almost all (96-97%) cases of AD and acute-on-chronic liver failure. Whilst the type of precipitant was not associated with mortality, the number of precipitant(s) was. This study identified precipitants that are significantly associated with a distinct clinical course and prognosis of patients with AD. Specific preventive and therapeutic strategies targeting these events may improve patient outcomes. (c) 2020 European Association for the Study of the Liver. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    The PREDICT study uncovers three clinical courses of acutely decompensated cirrhosis that have distinct pathophysiology

    Get PDF
    Acute decompensation (AD) of cirrhosis is defined as the acute development of ascites, gastrointestinal hemorrhage, hepatic encephalopathy, infection or any combination thereof, requiring hospitalization. The presence of organ failure(s) in patients with AD defines acute-on-chronic liver failure (ACLF). The PREDICT study is a European, prospective, observational study, designed to characterize the clinical course of AD and to identify predictors of ACLF. A total of 1,071 patients with AD were enrolled. We collected detailed pre-specified information on the 3-month period prior to enrollment, and clinical and laboratory data at enrollment. Patients were then closely followed up for 3 months. Outcomes (liver transplantation and death) at 1 year were also recorded. Three groups of patients were identified. Pre-ACLF patients (n = 218) developed ACLF and had 3-month and 1-year mortality rates of 53.7% and 67.4%, respectively. Unstable decompensated cirrhosis (UDC) patients (n = 233) required ≥1 readmission but did not develop ACLF and had mortality rates of 21.0% and 35.6%, respectively. Stable decompensated cirrhosis (SDC) patients (n = 620) were not readmitted, did not develop ACLF and had a 1-year mortality rate of only 9.5%. The 3 groups differed significantly regarding the grade and course of systemic inflammation (high-grade at enrollment with aggravation during follow-up in pre-ACLF; low-grade at enrollment with subsequent steady-course in UDC; and low-grade at enrollment with subsequent improvement in SDC) and the prevalence of surrogates of severe portal hypertension throughout the study (high in UDC vs. low in pre-ACLF and SDC). Acute decompensation without ACLF is a heterogeneous condition with 3 different clinical courses and 2 major pathophysiological mechanisms: systemic inflammation and portal hypertension. Predicting the development of ACLF remains a major future challenge. ClinicalTrials.gov number: NCT03056612. Lay summary: Herein, we describe, for the first time, 3 different clinical courses of acute decompensation (AD) of cirrhosis after hospital admission. The first clinical course includes patients who develop acute-on-chronic liver failure (ACLF) and have a high short-term risk of death - termed pre-ACLF. The second clinical course (unstable decompensated cirrhosis) includes patients requiring frequent hospitalizations unrelated to ACLF and is associated with a lower mortality risk than pre-ACLF. Finally, the third clinical course (stable decompensated cirrhosis), includes two-thirds of all patients admitted to hospital with AD - patients in this group rarely require hospital admission and have a much lower 1-year mortality risk

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Defining habitats suitablefor larval fish in the German Bight (southern North Sea): An IBM approach using spatially- and temporally-resolved, size-structured prey fields

    No full text
    We employed a coupled biological–physical, individual-based model (IBM) to estimate spatial and temporal changes in larval fish habitat suitability (the potential for areas to support survival and high rates of growth) of the German Bight, southern North Sea. In this Lagrangian approach, larvae were released into a size-structured prey field that was constructed from in situ measurements of the abundance and prosome lengths of stages of three copepods (Acartia spp., Temora longicornis, Pseudocalanus elongatus) collected on a station grid repeatedly sampled from February to October 2004. The choice of prey species and the model parameterisations for larval fish foraging and growth were based on field data collected for sprat (Sprattus sprattus) and other clupeid larvae. A series of 10-day simulations were conducted using 20 release locations to quantify spatial–temporal differences in projected larval sprat growth rates (mm d− 1) for mid-April, mid-May and mid-June 2004. Based upon an optimal foraging approach, modeled sprat growth rates agreed well with those measured in situ using larval fish ototliths. On the German GLOBEC station grid, our model predicted areas that were mostly unsuitable habitats (areas of low growth potential), e.g. north of the Frisian Islands, and others that were consistently suitable habitats (areas that had high growth potential), e.g. in the inner German Bight. In some instances, modelled larvae responded rapidly (~ 5 days) to changing environmental characteristics experienced along their drift trajectory, a result that appears reasonable given the dynamic nature of frontal regions such as our study area in the southern North Sea
    corecore