785 research outputs found

    Spin splitting of X-related donor impurity states in an AlAs barrier

    Full text link
    We use magnetotunneling spectroscopy to observe the spin splitting of the ground state of an X-valley-related Si-donor impurity in an AlAs barrier. We determine the absolute magnitude of the effective Zeeman spin splitting factors of the impurity ground state to be gI_{I}= 2.2 ±\pm 0.1. We also investigate the spatial form of the electron wave function of the donor ground state, which is anisotropic in the growth plane

    Modelling of laboratory data of bi-directional reflectance of regolith surface containing Alumina

    Full text link
    Bidirectional reflectance of a surface is defined as the ratio of the scattered radiation at the detector to the incident irradiance as a function of geometry. The accurate knowledge of the bidirectional reflection function (BRF) of layers composed of discrete, randomly positioned scattering particles is very essential for many remote sensing, engineering, biophysical applications and in different areas of Astrophysics. The computations of BRF's for plane parallel particulate layers are usually reduced to solve the radiative transfer equation (RTE) by the existing techniques. In this work we present our laboratory data on bidirectional reflectance versus phase angle for two sample sizes of 0.3 and 1 ÎĽm\mu m of Alumina for the He-Ne laser at 632.8 nm (red) and 543.5nm(green) wavelength. The nature of the phase curves of the asteroids depends on the parameters like- particle size, composition, porosity, roughness etc. In our present work we analyse the data which are being generated using single scattering phase function i.e. Mie theory considering particles to be compact sphere. The well known Hapke formula will be considered along with different particle phase function such as Mie and Henyey Greenstein etc to model the laboratory data obtained at the asteroid laboratory of Assam University.Comment: 5 pages, 5 figures [accepted for publication in Publications of the Astronomical Society of Australia (PASA) on 8 June, 2011

    A Giant Crater on 90 Antiope?

    Full text link
    Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to lambda0 = 199.5+/-0.5 eg and beta0 = 39.8+/-5 deg in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps et al., 2007). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the "shoulders" of the lightcurves. The bulk density was then recomputed to 1.28+/-0.04 gcm-3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (~50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ~17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50% probability to have occurred over the age of the Themis family.Comment: 30 pages, 3 Tables, 8 Figures. Accepted for publication in Icaru

    Hybridization of mouse lemurs: different patterns under different ecological conditions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several mechanistic models aim to explain the diversification of the multitude of endemic species on Madagascar. The island's biogeographic history probably offered numerous opportunities for secondary contact and subsequent hybridization. Existing diversification models do not consider a possible role of these processes. One key question for a better understanding of their potential importance is how they are influenced by different environmental settings. Here, we characterized a contact zone between two species of mouse lemurs, <it>Microcebus griseorufus </it>and <it>M. murinus</it>, in dry spiny bush and mesic gallery forest that border each other sharply without intermediate habitats between them. We performed population genetic analyses based on mtDNA sequences and nine nuclear microsatellites and compared the results to a known hybrid zone of the same species in a nearby wide gradient from dry spiny bush over transitional forest to humid littoral forest.</p> <p>Results</p> <p>In the spiny-gallery system, <it>Microcebus griseorufus </it>is restricted to the spiny bush; <it>Microcebus murinus </it>occurs in gallery forest and locally invades the dryer habitat of its congener. We found evidence for bidirectional introgressive hybridization, which is closely linked to increased spatial overlap within the spiny bush. Within 159 individuals, we observed 18 hybrids with mitochondrial haplotypes of both species. Analyses of simulated microsatellite data indicate that we identified hybrids with great accuracy and that we probably underestimated their true number. We discuss short-term climatic fluctuations as potential trigger for the dynamic of invasion and subsequent hybridization. In the gradient hybrid zone in turn, long-term aridification could have favored unidirectional nuclear introgression from <it>Microcebus griseorufus </it>into <it>M. murinus </it>in transitional forest.</p> <p>Conclusions</p> <p>Madagascar's southeastern transitional zone harbors two very different hybrid zones of mouse lemurs in different environmental settings. This sheds light on the multitude of opportunities for the formation of hybrid zones and indicates an important influence of environmental factors on secondary contact and hybridization. Our findings suggest that hybridization could enhance the adaptability of mouse lemurs without necessarily leading to a loss of distinctiveness. They point to a potential role of hybridization in Madagascar's diversification history that requires further investigation.</p

    A test for the search for life on extrasolar planets: Looking for the terrestrial vegetation signature in the Earthshine spectrum

    Full text link
    We report spectroscopic observations (400 to 800nm, R = approx 100) of Earthshine in June, July and October 2001 from which normalised Earth albedo spectra have been derived. The resulting spectra clearly show the blue colour of the Earth due to Rayleigh diffusion in its atmosphere. They also show the signatures of oxygen, ozone and water vapour. We tried to extract from these spectra the signature of Earth vegetation. A variable signal (4 to 10 +/-3%) around 700nm has been measured in the Earth albedo. It is interpreted as being due to the vegetation red edge, expected to be between 2 to 10% of the Earth albedo at 700nm, depending on models. We discuss the primary goal of the present observations: their application to the detection of vegetation-like biosignatures on extrasolar planets.Comment: 7 pages, 7 figures. A&A, accepted 6 May 200

    Racial Equity Considerations In Safe To Sleep Messaging: Learning From The Community

    Get PDF
    Black infants are dying at a rate of over twice that of White infants. We know that infants in unsafe sleep positions are more likely to die from Sudden Unexpected Infant Death (SUID). Safe to Sleep® education has led to a dramatic decrease in mortality among white infants, but over 60% of Black families do not follow the Safe to Sleep® parameters. Safe to Sleep® education is given to pregnant women during the prenatal period and prior to hospital discharge, but what is the best way to share this message with Black families

    Magnetic-field-induced singularities in spin dependent tunneling through InAs quantum dots

    Get PDF
    Current steps attributed to resonant tunneling through individual InAs quantum dots embedded in a GaAs-AlAs-GaAs tunneling device are investigated experimentally in magnetic fields up to 28 T. The steps evolve into strongly enhanced current peaks in high fields. This can be understood as a field-induced Fermi-edge singularity due to the Coulomb interaction between the tunneling electron on the quantum dot and the partly spin polarized Fermi sea in the Landau quantized three-dimensional emitter.Comment: 5 pages, 4 figure

    Approach for the determination of heat transfer coefficients for filling process of pressure vessels with compressed gaseous media

    Get PDF
    Paper presented at the 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 30 June - 2 July, 2008.For fast and effective simulation of filling processes of pressure vessels with compressed gaseous media the governing equations are derived from a mass balance equation for the gas and from energy balance equations for the gas and the wall of the vessel. For simplicity the gas is considered as a perfectly mixed phase and two heat transfer coefficients are introduced. The first one is the mean heat transfer coefficient between the gas and the inner surface of the pressure vessel and the second one is the heat transfer coefficient between outer surface of the vessel and the surroundings. Although the process is transient, steady-state heat transfer coefficients for free convection are used between outer surface of the vessel and the surroundings. The use of available correlations for steady-state heat transfer coefficients to describe transient processes is common practice, e.g. in the modelling of the transient behaviour of heat exchangers [1]. But no correlations – neither steady-state nor transient – are available for the heat transfer coefficient between inflowing gas and inner surface of the vessel. To solve this problem a CFD tool is used to determine the gas velocities at the vicinity of the inner surface of the vessel for a number of discrete surface elements. The results of a large amount of numerical experiments show that there exists a unique relationship between the tangential fluid velocities at the vicinity of the inner surface of the vessel and the gas velocity at the inlet. Once this unique relationship is known the complete velocity distribution at the vicinity of the inner surface can be easily calculated from the inlet velocity of the gas. The nearwall velocities at the outer limit of the boundary layer are substituted into the heat transfer correlation for external flow over flat plates. The final heat transfer coefficient is the areaweighted mean of all local heat transfer coefficients. The method is applied to the special case of filling a 70 MPa composite vessel for fuel cell vehicles with hydrogen. Because of the heat capacity of the composite wall consisting of an inner aluminium liner wrapped with carbon fibre, heat transfer from the compressed gas to the vessel wall strongly influences the temperature field of the gas which is predicted by the model and confirmed by experiments.vk201
    • …
    corecore