1,076 research outputs found

    Induction of osteogenic differentiation of bone marrow stromal cells on 3D polyester-based scaffolds solely by subphysiological fluidic stimulation in a laminar flow bioreactor

    Get PDF
    The fatal determination of bone marrow mesenchymal stem/stromal cells (BMSC) is closely associated with mechano-environmental factors in addition to biochemical clues. The aim of this study was to induce osteogenesis in the absence of chemical stimuli using a custom-designed laminar flow bioreactor. BMSC were seeded onto synthetic microporous scaffolds and subjected to the subphysiological level of fluid flow for up to 21 days. During the perfusion, cell proliferation was significantly inhibited. There were also morphological changes, with F-actin polymerisation and upregulation of ROCK1. Notably, in BMSC subjected to flow, mRNA expression of osteogenic markers was significantly upregulated and RUNX2 was localised in the nuclei. Further, under perfusion, there was greater deposition of collagen type 1 and calcium onto the scaffolds. The results confirm that an appropriate level of fluid stimuli preconditions BMSC towards the osteoblastic lineage on 3D scaffolds in the absence of chemical stimulation, which highlights the utility of flow bioreactors in bone tissue engineering.publishedVersio

    3D models of the hematopoietic stem cell niche under steady-state and active conditions

    Get PDF
    Hematopoietic stem cells (HSCs) in the bone marrow are able to differentiate into all types of blood cells and supply the organism each day with billions of fresh cells. They are applied to cure hematological diseases such as leukemia. The clinical need for HSCs is high and there is a demand for being able to control and multiply HSCs in vitro. The hematopoietic system is highly proliferative and thus sensitive to anti-proliferative drugs such as chemotherapeutics. For many of these drugs suppression of the hematopoietic system is the dose-limiting toxicity. Therefore, biomimetic 3D models of the HSC niche that allow to control HSC behavior in vitro and to test drugs in a human setting are relevant for the clinics and pharmacology. Here, we describe a perfused 3D bone marrow analog that allows mimicking the HSC niche under steady-state and activated conditions that favor either HSC maintenance or differentiation, respectively, and allows for drug testing

    Optimisation and validation of a custom-designed perfusion bioreactor for bone tissue engineering: Flow assessment and optimal culture environmental conditions

    Get PDF
    Various perfusion bioreactor systems have been designed to improve cell culture with three-dimensional porous scaffolds, and there is some evidence that fluid force improves the osteogenic commitment of the progenitors. However, because of the unique design concept and operational configuration, the experimental setups of perfusion bioreactor systems are not always compatible. To reconcile results from different systems, the thorough optimisation and validation of the experimental configuration are required in each system. In this study, optimal experimental conditions for a perfusion bioreactor were explored in 3 steps. First, an in silico modelling was performed using a scaffold geometry obtained by microCT and an expedient geometry parameterised with porosity and permeability to assess the accuracy of calculated fluid shear stress and computational time. Then, environmental factors for cell culture were optimised, including the volume of the medium, bubble suppression, and medium evaporation. Further, by combining the findings, it was possible to determine the optimal flow rate at which cell growth was supported but osteogenic differentiation was triggered. Here, we demonstrated that fluid shear stress, ranging from nearly 0 to 15 mPa, was sufficient to induce osteogenesis, but cell growth was severely impacted by the volume of perfused medium, the presence of air bubbles, and medium evaporation, all of which are common concerns in perfusion bioreactor systems. This study emphasises the necessity of optimisation of experimental variables, which may often be underreported or overlooked, and indicates steps which can be taken to address issues common to perfusion bioreactors for bone tissue engineering.publishedVersio

    Animal models of right heart failure

    Get PDF
    Right heart failure may be the ultimate cause of death in patients with acute or chronic pulmonary hypertension (PH). As PH is often secondary to other cardiovascular diseases, the treatment goal is to target the underlying disease. We do however know, that right heart failure is an independent risk factor, and therefore, treatments that improve right heart function may improve morbidity and mortality in patients with PH. There are no therapies that directly target and support the failing right heart and translation from therapies that improve left heart failure have been unsuccessful, with the exception of mineralocorticoid receptor antagonists. To understand the underlying pathophysiology of right heart failure and to aid in the development of new treatments we need solid animal models that mimic the pathophysiology of human disease. There are several available animal models of acute and chronic PH. They range from flow induced to pressure overload induced right heart failure and have been introduced in both small and large animals. When initiating new pre-clinical or basic research studies it is key to choose the right animal model to ensure successful translation to the clinical setting. Selecting the right animal model for the right study is hence important, but may be difficult due to the plethora of different models and local availability. In this review we provide an overview of the available animal models of acute and chronic right heart failure and discuss the strengths and limitations of the different models

    Development of 3D human intestinal equivalents for substance testing in microliter-scale on a multi-organ-chip : From 23rd European Society for Animal Cell Technology (ESACT) Meeting: Better Cells for Better Health Lille, France. 23-26 June 2013

    Get PDF
    First published by BioMed Central: Jaenicke, Annika; Tordy, Dominique; Groeber, Florian; Hansmann, Jan; Nietzer, Sarah; Tripp, Carolin; Walles, Heike; Lauster, Roland; Marx, Uwe: Development of 3D human intestinal equivalents for substance testing in microliter-scale on a multi-organ-chip. - In: BMC Proceedings. - ISSN 1753-6561 (online). - 7 (2013), suppl. 6, P65. - doi:10.1186/1753-6561-7-S6-P65

    Radiation dose reduction: comparative assessment of publication volume between interventional and diagnostic radiology

    Get PDF
    PURPOSE:We aimed to quantify and compare awareness regarding radiation dose reduction within the interventional radiology and diagnostic radiology communities.METHODS:Abstracts accepted to the annual meetings of the Society of Interventional Radiology (SIR), the Cardiovascular and Interventional Radiological Society of Europe (CIRSE), the Radiological Society of North America (RSNA), and the European Congress of Radiology (ECR) between 2005 and 2015 were analyzed using the search terms “interventional/computed tomography” and “radiation dose/radiation dose reduction.” A PubMed query using the above-mentioned search terms for the years of 2005–2015 was performed.RESULTS:Between 2005 and 2015, a total of 14 520 abstracts (mean, 660±297 abstracts) and 80 614 abstracts (mean, 3664±1025 abstracts) were presented at interventional and diagnostic radiology meetings, respectively. Significantly fewer abstracts related to radiation dose were presented at the interventional radiology meetings compared with the diagnostic radiology meetings (162 abstracts [1% of total] vs. 2706 [3% of total]; P < 0.001). On average 15±7 interventional radiology abstracts (range, 6–27) and 246±105 diagnostic radiology abstracts (range, 112–389) pertaining to radiation dose were presented at each meeting. The PubMed query revealed an average of 124±39 publications (range, 79–187) and 1205±307 publications (range, 829–1672) related to interventional and diagnostic radiology dose reduction per year, respectively (P < 0.001).CONCLUSION:The observed increase in the number of abstracts regarding radiation dose reduction in the interventional radiology community over the past 10 years has not mirrored the increased volume seen within diagnostic radiology, suggesting that increased education and discussion about this topic may be warranted

    a study to discover novel tumor-specific mutations

    Get PDF
    Background Splenic marginal zone lymphoma (SMZL) is an indolent B-cell non- Hodgkin lymphoma and represents the most common primary malignancy of the spleen. Its precise molecular pathogenesis is still unknown and specific molecular markers for diagnosis or possible targets for causal therapies are lacking. Methods We performed whole exome sequencing (WES) and copy number analysis from laser-microdissected tumor cells of two primary SMZL discovery cases. Selected somatic single nucleotide variants (SNVs) were analyzed using pyrosequencing and Sanger sequencing in an independent validation cohort. Results Overall, 25 nonsynonymous somatic SNVs were identified, including known mutations in the NOTCH2 and MYD88 genes. Twenty-three of the mutations have not been associated with SMZL before. Many of these seem to be subclonal. Screening of 24 additional SMZL for mutations at the same positions found mutated in the WES approach revealed no recurrence of mutations for ZNF608 and PDE10A, whereas the MYD88 L265P missense mutation was identified in 15 % of cases. An analysis of the NOTCH2 PEST domain and the whole coding region of the transcription factor SMYD1 in eight cases identified no additional case with a NOTCH2 mutation, but two additional cases with SMYD1 alterations. Conclusions In this first WES approach from microdissected SMZL tissue we confirmed known mutations and discovered new somatic variants. Recurrence of MYD88 mutations in SMZL was validated, but NOTCH2 PEST domain mutations were relatively rare (10 % of cases). Recurrent mutations in the transcription factor SMYD1 have not been described in SMZL before and warrant further investigation

    Whole exome sequencing of microdissected splenic marginal zone lymphoma: a study to discover novel tumor-specific mutations

    Get PDF
    BACKGROUND: Splenic marginal zone lymphoma (SMZL) is an indolent B-cell non-Hodgkin lymphoma and represents the most common primary malignancy of the spleen. Its precise molecular pathogenesis is still unknown and specific molecular markers for diagnosis or possible targets for causal therapies are lacking. METHODS: We performed whole exome sequencing (WES) and copy number analysis from laser-microdissected tumor cells of two primary SMZL discovery cases. Selected somatic single nucleotide variants (SNVs) were analyzed using pyrosequencing and Sanger sequencing in an independent validation cohort. RESULTS: Overall, 25 nonsynonymous somatic SNVs were identified, including known mutations in the NOTCH2 and MYD88 genes. Twenty-three of the mutations have not been associated with SMZL before. Many of these seem to be subclonal. Screening of 24 additional SMZL for mutations at the same positions found mutated in the WES approach revealed no recurrence of mutations for ZNF608 and PDE10A, whereas the MYD88 L265P missense mutation was identified in 15 % of cases. An analysis of the NOTCH2 PEST domain and the whole coding region of the transcription factor SMYD1 in eight cases identified no additional case with a NOTCH2 mutation, but two additional cases with SMYD1 alterations. CONCLUSIONS: In this first WES approach from microdissected SMZL tissue we confirmed known mutations and discovered new somatic variants. Recurrence of MYD88 mutations in SMZL was validated, but NOTCH2 PEST domain mutations were relatively rare (10 % of cases). Recurrent mutations in the transcription factor SMYD1 have not been described in SMZL before and warrant further investigatio

    A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms

    Get PDF
    Background: Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs) have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required. Methodology/Principal Findings: Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203), T-cell (n = 30), and myeloid (n = 134) neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression. Conclusions/Significance: We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes—DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1—that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs

    HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer

    Get PDF
    Introduction: Recent data suggest that benefit from trastuzumab and chemotherapy might be related to expression of HER2 and estrogen receptor (ESR1). Therefore, we investigated HER2 and ESR1 mRNA levels in core biopsies of HER2-positive breast carcinomas from patients treated within the neoadjuvant GeparQuattro trial. Methods: HER2 levels were centrally analyzed by immunohistochemistry (IHC), silver in-situ hybridization (SISH) and qRT-PCR in 217 pretherapeutic formalin-fixed, paraffin-embedded (FFPE) core biopsies. All tumors had been HER2-positive by local pathology and had been treated with neoadjuvant trastuzumab/ chemotherapy in GeparQuattro. Results: Only 73% of the tumors (158 of 217) were centrally HER2-positive (cHER2-positive) by IHC/SISH, with cHER2-positive tumors showing a significantly higher pCR rate (46.8% vs. 20.3%, p<0.0005). HER2 status by qRT-PCR showed a concordance of 88.5% with the central IHC/SISH status, with a low pCR rate in those tumors that were HER2-negative by mRNA analysis (21.1% vs. 49.6%, p<0.0005). The level of HER2 mRNA expression was linked to response rate in ESR1-positive tumors, but not in ESR1-negative tumors. HER2 mRNA expression was significantly associated with pCR in the HER2-positive/ESR1-positive tumors (p=0.004), but not in HER2-positive/ESR1-negative tumors. Conclusions: Only patients with cHER2-positive tumors - irrespective of the method used - have an increased pCR rate with trastuzumab plus chemotherapy. In patients with cHER2-negative tumors the pCR rate is comparable to the pCR rate in the non-trastuzumab treated HER-negative population. Response to trastuzumab is correlated to HER2 mRNA levels only in ESR1-positive tumors. This study adds further evidence to the different biology of both subsets within the HER2-positive group
    • …
    corecore