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Introduction

The right ventricle is a thin-walled structure and an increase 
in RV afterload, sudden or chronic, may induce RV failure. 
RV failure is the ultimate cause of morbidity and mortality 
in several cardiovascular conditions such as congenital 
heart disease, left heart disease, pulmonary hypertension 
(PH), pulmonary valve disease, and acute pulmonary 
embolism (PE) (1,2). There are no current therapies that 
directly target or support the failing RV. There have been 

several attempts to develop therapies that directly support 
the failing RV, but the clinical translation has so far been 
unsuccessful and treatments that effectively improve the 
failing left heart do not seem to support the failing RV (3). 
As RV failure is often secondary to other cardiovascular 
conditions, the primary treatment goal is to treat the cause 
of RV failure. We know that RV function is an independent 
risk factor in many cardiopulmonary morbidities (4) 
and therefore, targeted therapy to improve RV function 
may improve overall morbidity and mortality in patients 
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suffering from RV failure. To test current and new therapies 
and to conduct basic research for better understanding of 
the underlying pathophysiology in RV failure, we need solid 
and well-described animal models of RV failure. A plethora 
of animal models of RV failure exists and choosing the right 
model for the right experiment may be challenging. The 
aim of this review is to give an overview of the available 
models of RV failure and to provide the reader with 
strengths and limitations of the existing RV failure models.

Animal models of RV failure

RV failure can be caused by several entities. Figure 1 gives 
an overview of the targets for inducing RV failure in animal 
models. The different methods will be discussed in the 
following sections, and for each section there is a table with 
the animal models listed including strengths and limitations 
to the model and references to the animal species that the 
model have been introduced in.

Acute RV failure

The thin-walled RV is sensitive to acute increases in 
afterload. This causes acute RV failure induced by an abrupt 
increase in RV afterload in the majority of experimental 
models. Beside this common denominator, models of acute 
RV failure vary both in terms of the method of afterload 
increase, animal species, and hemodynamic phenotype. 
We focus on two main categories; Models of acute PE and 
models of acute transient pulmonary occlusion (Table 1).  

Models of acute PE
Models of acute PE inject different materials to the 
pulmonary circulation, herby increasing pulmonary vascular 
resistance (PVR) and hence RV afterload and strain.  

Pharmacological PE models
Pharmacological PE models use intravascular injections 
o f  drugs  which  cause  b lood  coagula t ion  and/or 
vasoconstriction. Most frequently used are thrombin (5), 
collagen combined with epinephrine (6), or adenosine 
diphosphate (10). To target the pulmonary circulation, drugs 
are injected in the jugular vein, the right heart, or directly 
into the pulmonary circulation. The latter models are more 
specific, but require right heart catheterization. These 
models are mainly used in rodents and the hemodynamic 
phenotype is often complete hemodynamic collapse and 
death within minutes of injection (6). The primary endpoint 
is often mortality, as hemodynamic efficacy is difficult to 
detect due to the massive thrombus burden. The models 
are simple and inexpensive, but require a high number 
of animals (49). More recent models have succeeded in 
creating a balanced phenotype of RV strain (7-9). Despite 
this, the pathophysiology of the models remains far from 
that of clinical PE.

Artificial exogenous PE models
Models of exogenous PE inject pre-formed thrombus 
material into the pulmonary circulation. The majority 
are based on artificial thrombus material such as glass 
beads or plastic spheres (11-20,50-52). While non-
physiological, these models create a predictable increase 
in PVR and RV strain. Furthermore, the afterload is 
consistent over time, as the materiel does not dissolve. The 
hemodynamic phenotypes vary from little or no RV strain 
to decompensated RV failure and shock depending on the 
afterload increase. Exogenous clot models are therefore 

Figure 1 Overview of the targets for inducing right ventricular 
failure in animal models. A, pulmonary artery banding; B, 
pulmonary regurgitation; C1, mild pulmonary hypertension 
(monocrotaline, shunt, hypoxia, BMPR2-/-); C2, severe pulmonary 
hypertension (sugen + hypoxia, MCT + shunt); D, pulmonary 
embolism; E, pulmonary vein banding; F, aorto-caval shunt.
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Table 1 Models of acute right ventricular failure

Method Strengths Limitations Mouse Rat Rabbit Dog Sheep Pig

Pulmonary embolism

Pharmacological 
coagulation  
vasoconstriction

Feasible Often fatal (5-9) (10)

Minimal instrumentation Difficult to control thrombus 
load

Large clot burden Unlike human physiology

Exogenous clot  
Artificial

Feasible Unlike human physiology (11-13) (14,15) (16) (17,18) (19,20)

Controllable thrombus burden Only distal thrombus

Stable and lasting thrombus Not able to remove thrombus

Exogenous clot  
Autologous

Comparable to human physiology Thrombus created ex vivo—
Homogenous and fresh

(21-24) (25-30) (18,31) (32-37)

Thrombus resolution possible Difficult to administer en 
block—Risk of fragmentation.

Controllable thrombus load.

Deep venous  
thrombosis

Thrombus created in vivo— 
Heterogeneous and chronic

Challenging setup (38) (39)

Comparable to human physiology Time needed for thrombus  
formation

Central thrombus Difficult to control thrombus 
load.

Pulmonary artery occlusion

Pulmonary artery 
banding

Precise afterload increase Need for open chest (40) (41) (42) (43-45) (46,47)

Stable afterload Not suited for pulmonary  
interventions

Adjustable Unlike human physiology

Wide range of RV strain

Pulmonary artery 
balloon

Precise afterload increase Not suited for pulmonary  
interventions

(48)

Stable afterload Unlike human physiology

Adjustable

Wide range of RV strain

An overview of models of RV failure stratified to method of afterload increase and animal species.

well-suited for evaluating RV function and interventions 
targeting the RV or systemic circulation. The concept 
has been implemented in a wide range of species varying 
from rodents to large animals. The artificial nature of 
the thrombus, however, differs from that of autologous 
PE. Firstly, artificial material does not possess the same 
vasoactive effects as an autologous thrombus. Secondly, the 
artificial materiel cannot be dissolved and does not allow for 

evaluations of interventions of thrombus removal. 

Autologous exogenous PE models
Models of autologous PE all use a variation of the same 
technique. Blood is drawn from the animal, then set to 
coagulate ex vivo into an autologous thrombus, before 
it is re-injected to the pulmonary circulation as a PE. 
The protocol for thrombus formation varies between 



1564 Andersen et al. Animal models of right heart failure 

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(5):1561-1579 | http://dx.doi.org/10.21037/cdt-20-400

models. While all models aim to create a PE similar to 
that found in patients, thrombi are still created ex vivo, 
and are not exposed to the continuous flow of substrates 
in the vein of a patient. The thrombi are therefore less 
heterogeneous, less rigid, and less fibrotic compared with 
a chronic thrombus from a patient (53). The thrombus 
size varies between models from small clots, which lodge 
distally (25,26,31-36,54), to large central PEs (37). The 
hemodynamic phenotype entails ranges of RV strain 
(37,54) and decompensated RV failure (21-23). Models of 
autologous PE are well-suited for studies of RV function, 
but also of interventions focusing on the thrombus, both 
pharmacological treatments and, in the larger animal 
models (dog, sheep, pig), novel catheter directed therapies. 
The latter may prove important in preclinical evaluations of 
safety and efficacy in this promising new field (55).

Deep venous thrombosis-PE models
The models most true to that of clinical PE are based on 
in vivo thrombus formation. By occluding the inferior 
vena cava, models have succeeded in creating deep vein 
thrombosis (DVT), which can be released to travel via the 
blood stream to the pulmonary circulation (39). As the 
thrombus forms in vivo, over time, it is more heterogeneous 
and possibly more similar to that of a patient. The models 
are however associated with challenges. Instrumentation 
is more extensive and the DVT needs days to form, 
why experiments cannot be performed on the same day. 
Furthermore, it is not possible to control the thrombus 
size and hence the afterload increase and hemodynamic 
phenotype. Consequently, models have not been able to 
show RV strain. Studies on experimental DVT-PE are 
few and have to our knowledge only been implemented in  
rats (38) and pigs (39).

Models of transient pulmonary artery occlusion 
Models of transient pulmonary artery occlusion increase 
RV afterload by mechanical constriction of the pulmonary 
artery from the exterior or by inflation of intravascular 
balloons (48). External occlusion can be applied by ligature 
(43,44), snares (42), simple banding (40), or more advanced 
adjustable bands using air (41,45,46). The occlusion, 
and hence the PVR and RV strain, can be adjusted very 
precisely and, as opposed to PE models, the resistance 
can be reduced or even removed as the occlusion can be 
re-loosened. As the mechanical occlusion is fixed at the 
level of the main pulmonary artery, the resistance of the 
more distal pulmonary circulation is less important. The 

models are therefore well-suited for studies of isolated RV 
function and not of pulmonary effects. A drawback of the 
models is the need for open chest protocols, which both 
increases instrumentation but also changes cardiovascular 
hemodynamics. Models exists in both rodents (40),  
rabbits (41), and large animals (42-45).

Sustained pressure overload-induced RV failure

Sustained pressure overload of the RV can induce failure. 
The right ventricle does not respond well to an abrupt 
increase in afterload (56) but with a chronic pressure 
overload the RV adapts well and it can adapt to systemic 
afterload for an extended period of time. Initially, the 
adaption to the increase in pressure is beneficial, but with 
sustained and increasing pressure overload, the RV will 
eventually fail (57). Sustained pressure overload of the RV is 
clinically seen in patients with PH and a RV outflow tract or 
pulmonary valve stenosis. In animal models, it is important 
to distinguish between models with a fixated RV afterload or 
not. The pulmonary artery banding model is a model with a 
fixated afterload making it suitable to evaluate interventions 
targeting RV function without worrying about the result 
being secondary to afterload reduction. Models of PH on 
the other hand are very well suited to evaluate treatments 
targeting the pulmonary circulation, but an improvement 
in RV function may be secondary to an afterload reduction 
and not caused by direct effects on the RV. The models are 
presented in the following and Table 2.

Pulmonary artery banding (PAB)
PAB is a simple surgical procedure, where a band is 
tightened around the pulmonary artery to increase 
afterload. This induces sustained pressure overload and 
over time RV dysfunction and/or failure. In small animal 
models of rats and mice the most commonly used methods 
is a pre-adjusted hemostatic clip (58,61-63) or a ligature 
tightened around the pulmonary artery (59,60,64-66,96,97). 
Both methods works well, but the clip-method may be 
a bit faster to learn and more reproducible, whereas the 
ligature method does not introduce metal, making it more 
suitable for MRI or ultrasound evaluation of flow in the 
pulmonary artery. A challenge with the banding model have 
been to introduce RV failure and not just a well-adapted 
hypertrophic RV (98). The challenge is that in adult animals 
a tight band induces acute RV failure and death, but a looser 
band will never induce RV failure, but only compensated 
RV hypertrophy. To overcome this, most models introduce 
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Table 2 Models of Sustained pressure overload induced right ventricular failure

Method Strengths Limitations Mouse Rat Rabbit Dog Sheep Pig Calves

Pulmonary artery occlusion

Pulmonary artery  
banding

Simple Abrupt initial afterload 
increase

(58-60) (61-66) (67-69) (70-72) (73) (74-76)

Reproducible Difficult to induce severe RV 
failure

Direct RV affection

Pulmonary hypertension

Monocrotaline Feasible Myocarditis, large variation (77-79)

Simple No angio-obliterative  
pulmonary lesions

Monocrotaline +  
hypoxia

Angio-obliterative pulmonary 
lesions

Myocarditis (80)

Decompensated RV failure Large same-strain animal  
variation

Monocrotaline +  
pneumonectomy

Angio-obliterative pulmonary 
lesions

Myocarditis (81)

Decompensated RV failure Large same-strain animal  
variation

Surgical procedure

Chronic hypoxia Stable response within  
same-strain animals

Only compensated RV  
hypertrophy

(82) (83) (84)

Spontaneously reversible 
after return to normoxia

Sugen+hypoxia Decompensated RV failure Possible Off-target effects 
of Sugen and/or hypoxia

(85) (86,87)

Lung pathophysiology  
comparable to human PAH

Fawn-hooded  
rats

Chromosomal abnormality 
similar to idiopathic PAH

Limited to the fawn-hooded 
rat

(88-90)

Sugen in athymic 
rats

Lung pathophysiology  
comparable to human PAH

Development of RV failure 
has not been described

(91)

Apoptosis of myocardial  
microvascular endothelial 
cells

Chronic  
thromboembolic 
pulmonary  
hypertension 
(CTEPH)

Mimics the hemodynamics 
of CTEPH

Not exact pathophysiologic 
CTEPH

(92) (93-95)

An overview of models of RV failure stratified to method of afterload increase and animal species. PAH, pulmonary arterial hyoertension; 
CTEPH, chronic thromboembolic pulmonary hypertension. 
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the surgery in weanlings. By doing this, the stenosis will 
become relatively more severe as the animal grows and 
allow for severe RV failure over time. 

Another advantage of the banding method is that the 
precise diameter of the band/clip allows for precise titration 
of afterload to induce RV hypertrophy, compensated RV 
failure, or decompensated RV failure (61,99,100). As seen 
by hypertrophy with preserved hemodynamics, altered 
hemodynamics, but no extracardiac signs of RV failure, and 
altered hemodynamics with extracardiac signs of RV failure. 
The larger animal models of PAB have been described in 
rabbits (67-69), dogs (70-72), swine (74,75), and sheep 
(44,101). Advantage of large animal models over small 
animal models in RV failure is predominantly the more 
“human like” anatomy of the larger animals making more 
refined surgical methods for banding possible. This allows 
for bands that can be adjusted (73,75,102,103) over time, an 
obstructing balloon instead of a band (104), and removal of 
band to investigate reverse RV remodeling (71). 

Hypoxia
Chronic hypoxia (usually FiO2 10% or 0.5 atmospheric 
pressure, for 3 weeks) has been used to induce PH in 
various animal species for decades (82-84). Exposure to 
hypoxia cause transient muscularization and thickening of 
the smaller pulmonary arteries (105) accompanied by an 
inflammatory response (106). RV function is, however, well 
preserved under hypoxic conditions (107).

PH caused by chronic hypoxia (group 3.4 PH “hypoxia 
without lung disease”) (108) only induces compensated RV 
hypertrophy, but no RV dilation, and is transient, i.e., RV 
and PA pressure, and peripheral PA muscularization turn 
back to normal within days when animals are returned to 
room air. Accordingly, the chronic hypoxia model is not 
a model of RV dysfunction or failure, and not a model of 
PAH. 

The response to chronic hypoxia varies significantly with 
age, where younger animals with more immature lungs 
seems much more susceptible to develop severe vascular 
injuries (84). The response also varies among species, where 
rats develop more severe PH when exposed to hypoxia 
compared with for example mice (105). The most severe 
response is observed in Fawn-hooded rats (88). Due to 
defect pulmonary vascular oxygen sensing, they develop 
severe PH under hypoxic conditions and even under 
normoxic conditions changes in pulmonary pressures occurs 
in these rats (89,90). 

Specific genetic animal models may yield protection 

or aggravation of  chronic hypoxia-induced PH, and thus 
chronic hypoxia may be used in the phenotyping of such 
genetic models (109).

However, the aforementioned normalization of PH and 
pulmonary vascular remodeling after the end of chronic 
hypoxia, and the limited food and fluid intake during 
hypoxia (dehydration) are major limitation to the chronic 
hypoxia model. It should also be noted that chronic hypoxia 
drastically changes the mRNA expression profile in rat 
RV even several weeks after the return to  normoxia (110), 
highlighting that rodent models involving hypoxia, i.e., 
chronic hypoxia-mediated PH or Sugen-Hypoxia (SuHx-
PAH; see below under 2.2.4), should include a vehicle-
chronic hypoxia control group (110).

Monocrotaline (MCT) in rats
In the 1960s, it was shown that ingestion of the Crotalaria 
spectabilis seeds (MCT) induced PH in rats (77). Today, a 
subcutaneous injection of 60 mg/kg is the most common 
way to administer MCT (78). After oxidization in the 
liver to its active metabolite, MCT induces pulmonary 
endothelial cell damage and vasculitis (111), and during the 
following weeks PH and associated RV hypertrophy and 
failure develop.

Its methodological simplicity and low cost compared 
with other PH models makes the MCT model an appealing 
model, but its translatability is very limited. In addition to 
pulmonary effects, MCT also causes myocarditis evident 
by infiltration of inflammatory cells in the RV and LV 
myocardium (112,113). These direct cardiac effects are 
a major limitation when the model is used in RV failure 
research. 

Others questioned the suitability of the MCT model 
as a preclinical model of pulmonary arterial hypertension 
(PAH) based on the absence of plexiform lesions and 
occurrence of pulmonary venous changes (105). On the 
contrary, angio-obliterative pulmonary lesions develop in 
MCT rats with increased right pulmonary blood flow after 
left pneumonectomy and in MCT rats subjected to hypoxia, 
and these 2-hit-models may provide better alternatives to 
the single-hit MCT model (80,81). 

Sugen hypoxia (SuHx) in rats
The SuHx rat model is a 2-hit model, where a single 
subcutaneous injection with the VEGF-receptor antagonist 
Sugen 5416 is followed by 3–4 weeks of hypoxia (86). The 
resulting endothelial hyperproliferation leads to progressive 
pulmonary vascular occlusion even after return to normoxia 
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and RV systolic pressures of approximately 75 (65–100 mmHg)  
(87,114,115).  

Severe PH is confirmed 1 week after return to normoxia, 
in the absence of significant RV dysfunction, but then 
systolic and diastolic RV dysfunction develops and RV 
failure is evident after another 5 weeks (6 weeks after the 
end of 3 weeks hypoxia) (110). A linear relationship between 
RV systolic pressure/RV hypertrophy and the density of 
occluded pulmonary vessels confirms, that the development 
of increased RV pressures and RV hypertrophy in this model 
is indeed caused by the pulmonary vascular changes and not 
direct cardiac effects of Sugen 5416 and/or hypoxia (116).  
Compared with rats exposed to hypoxia alone, SuHx rats 
develop decompensated RV failure (elevated RVEDP, RV 
dilation and decreased RVEF by cardiac MRI) (110) with 
maladaptive RV remodeling. Moreover pulmonary vascular 
lesions (concentric hypertrophic and plexiform) have 
been reported in this model (86,110,117), and accordingly 
the SuHx model is generally considered the rat model 
resembling human PAH and associated RV failure the best 
(114,118). Another approach that resembles the changes 
seen in SuHx is pneumonectomy in combination with 
sugen 5416 (119). This raises the question on whether the 
changes in the SuHx model are caused by hypoxia alone or 
if they are induced by the increase in shear- and radial stress 
secondary to hypoxic vasoconstriction.  

Sugen normoxia in athymic rats 
Athymic nude rats lacking T cellsdevelop PH and associated 
RV hypertrophy after subcutaneous Sugen 5416 injection 
(10–20 mg/kg/body weight) even without exposure to 
hypoxia, although RV (dys) function has not been assessed 
in this model (91). Preliminary experimental work indicates 
that these rats rapidly develop RV failure, as assessed by 
echocardiography and cardiac MRI, associated with high 
mortality (G. Hansmann, unpublished observation).

The lack of T regulatory cells and the surge of 
leukotriens have been propsed as major drivers of the 
pathobiology in the athymic SuNx rat model and (91) 
the model have been used to prove the involvement of 
macrophage derived leukotriene A4 hydrolase in the 
development of PH (120).

Sugen hypxoxia in mice
Weekly Sugen 5416 injections during exposure to hypoxia 
cause PH in mice, but despite persistent PH, progressive 
RV failure and pulmonary occlusive lesions are lacking 
during long-term follow-up (85,121), and a reliable wild 

type murine model resembling the progressive development 
of pulmonary vascular lesions and RV failure in PAH 
patients still needs to be established.

A recent systematic review of animal models of PH 
including almost 300 publications recapitulated that the 
chronic hypoxia model is characterized by the lowest 
increase in RV systolic pressure and hypertrophy compared 
with the other models (122). The most severe response 
occurs in the SuHx model. Comparing MCT and SuHx 
rats, MCT rats have a much higher mortality despite similar 
degrees of RV dysfunction and lower mPAP in the MCT 
rats, suggesting that other factors contribute to disease 
progression and death in the MCT model (78). Although 
the response to chronic hypoxia varies significantly across 
species, it is consistent within a selected animal strain. For 
example the response to hypoxia is much more pronounced 
in rats compared with mice (122). On the contrary, the 
response to MCT injection varies significantly among even 
same-strain animals, probably due to differences in hepatic 
metabolism (82,105).

Chronic thromboembolic PH (CTEPH)
CTEPH is a disease that develops from unresolved acute PE 
or in situ thrombus formation that obstruct the pulmonary 
vessels (123). The severity of disease is not only dependent 
on the mechanical obstruction of the chronic clots but 
also of the small vessel disease that follows (124,125). 
The underlying pathophysiology is not fully understood, 
and the causes of CTEPH seems to be multifactorial.  
Repeated thromboembolic events, coagulopathies, and 
inflammation all seem to be involved in the development of 
CTEPH (126). The lack of pathobiological understanding 
of CTEPH makes the available animal models limited, 
but it also underlines the importance of developing new 
animal models, as they can improve our understanding of 
this disease. Several attempts have been made to develop 
a model of CTEPH, but the early models did not succeed 
in replicating CTEPH due to clot lysis or the absence of 
PH and RV failure despite inhibition of clot lysis and the 
presence of chronic thrombi (127-130). Newer models have 
succeeded in mimicking the hemodynamic characteristics of 
CTEPH. One model of CTEPH ligate the left pulmonary 
artery followed by weekly injection of histoacryl in the 
artery of the right lower lobe for 5 weeks (93). Another 
model induces a percutaneously placed cobber scaffold 
followed by embolization and tranexamic acid (94). Despite 
successful mimicking the hemodynamics of CTEPH, they 
do not mimic the pathophysiology or -biology of CTEPH. 
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Rat and pig models of microspheres in combination 
with thrombin, the tyrosine kinase inhibitor SU5416, or 
nitric oxide synthase (NOS) inhibition induced PH, RV 
hypertrophy, and thickening of the pulmonary arteries 
suggesting more accurate CTEPH models, but a limitation 
in these models is the use of microbeads, not autologous 
blood clots (92,95). The available CTEPH models are 
very useful for describing pathophysiology changes with 
increasing RV afterload to investigate interventions that 
may limit microvascular disease, and the researchers should 
be complemented for developing these elaborate models, 
but to fully understand the underlying pathophysiology and 
-biology of CTEPH we need more animal models that truly 
mimics CTEPH.  

Volume overload-induced RV failure

RV volume overload occurs in three main clinical entities: 
(I) pulmonary regurgitation due to pulmonary valve 
insufficiency or as occurs frequently in repaired Tetralogy 
of Fallot (ToF) (131,132); (II) tricuspid regurgitation  (133);  
(III) pre-tricuspid shunts such as atrial septal defects 
(ASDs). Post-tricuspid shunts such as ventricular septal 
defects (VSDs) also cause RV volume overload, but with 
an increased pressure load component due to high LV 
systolic pressures and the relatively rapid development of 
shunt-induced PAH (134). Volume overload-associated 
RV failure is a growing concern especially in repaired ToF, 
now survival of these patients throughout childhood has 
improved (132). However, the pathology of RV volume load 
and its treatment are relatively unexplored area of research, 
and experimental data in animal models is warranted (135). 
The available animal models for RV volume overload are 
(I) the aorto-caval shunt model, and (II) the pulmonary 
regurgitation model. A model for tricuspid regurgitation 
has also been described in dogs, but RV volume load was 
not assessed (136) (Table 3).

Aorto-caval shunt 
The aorto-caval shunt model has been described in mice (153),  
rats (137,138,144,153,154), pigs (155), and dogs (152).  
The rat is the predominant species. Shunt surgery in rats 
is a relatively simple and quick (20 minutes) procedure, 
of which a detailed step-by-step protocol and a video are 
available (139). In a meta-analysis of 145 shunted animals of 
multiple species, aorto-caval shunt surgery consistently led 
to increased end-diastolic and end-systolic volume and area, 

increased cardiac output, and stroke volume, indicating 
volume load. RV dP/dt max also increased, indicating 
increased contractility, probably due to the Frank-Starling 
mechanism (135). TAPSE and RV ejection fraction did not 
differ in shunted animals versus controls, and also did not 
deteriorate over time (up to 90 days), suggesting that RV 
failure does not occur in shunted animals. However, meta-
regression analysis did indicate that the early rise in cardiac 
output as a result of the shunt decreases after 90 days, 
suggesting a trend towards RV dysfunction. RV end diastolic 
pressure, a surrogate for RV dysfunction also increased 
in shunted animals versus controls. RV hypertrophy was 
observed in all shunted animals, and was consistently 
reported as an early response phenomenon, with no 
progression during prolonged shunting. Myocardial fibrosis 
was only observed in shunted animals after 90 days (135).  
When using the aorto-caval shunt model to study isolated 
RV volume overload, it is important to realize that these 
models may also induce PH (thus RV pressure load) over 
time, due to chronic pulmonary overcirculation (156). The 
addition of a pressure component to RV load is associated 
with a distinctly different hemodynamic and molecular RV 
adaptation profile (137). It is advisable therefore to rule 
out the presence of PH by measuring pulmonary artery 
pressures.

Pulmonary valve regurgitation
The pulmonary regurgitation, or pulmonary valve 
insufficiency model has been characterized predominantly 
in pigs (76,157-162), but also in sheep (163) and mice (164).  
Pulmonary regurgitation is created by placing sutures 
through the wall of the pulmonary trunk around the 
hinge points of the pulmonary valve leaflets (157). In a 
meta-analysis of 135 animals, pigs mostly, pulmonary 
regurgitation surgery led to increased end-diastolic and end-
systolic volume and area, indicating RV volume load (135).  
RV stroke volume was also increased, but cardiac output and 
ejection fraction were unchanged. Pulmonary regurgitation 
fraction was increased. RV contractility, expressed as 
RV preload recruitable stroke work (PRSW) and RV 
end-systolic pressure-volume relation (ESPVR), were 
significantly decreased, and RV end-diastolic pressure was 
increased in regurgitation animals compared to controls, 
suggesting RV dysfunction. Like in the shunted animals, 
RV hypertrophy was observed early (<90 days) after surgery 
and did not appear to increase further with longer duration 
of the study. Myocardial fibrosis was reported only after 90 



1569Cardiovascular Diagnosis and Therapy, Vol 10, No 5 October 2020

© Cardiovascular Diagnosis and Therapy. All rights reserved. Cardiovasc Diagn Ther 2020;10(5):1561-1579 | http://dx.doi.org/10.21037/cdt-20-400

Table 3 Models of combined volume and pressure overload

Method Strengths Limitations Mouse Rat Rabbit Dog Sheep Pig

Volume load + pulmonary hypertension

MCT + shunt Vascular remodeling  
comparable to human PAH

Rapid RV decompensation (137-143)

Time dependent progression 
of severe RV failure

Possible direct effects of MCT 
on the RV

Chronic  
arterial-venous  
shunting

Physiology highly similar to 
PAH in adult ASD patients

Mild pulmonary hypertension (144) (145)

>6 months to develop  
pressure load

Shunt induced after birth

Fetal aorto-pulmonal 
shunt

Mimics pathophysiology of 
congenital shunts

Technically challenging  
surgical model

(146-151)

Only mild PAH and RV  
dysfunction

Volume load + pulmonary artery banding

Shunt + pulmonary 
artery banding

Precise volume and afterload 
increase

Need for open chest (152)

Stable afterload, Adjustable Only one study (in dogs)

Wide range of RV strain

Pulmonary  
regurgitation +  
pulmonary artery  
banding

Physiology similar to patients 
with tetralogy of Fallot

Difficult (74)

Need for open chest

Only one study (in pigs)

An overview of models of Models of combined volume and pressure overload stratified to method of combined load increase and animal 
species. PAH, pulmonary arterial hypertension; MCT, monocrotaline. 

days of volume overload (135).

Combined volume- and pressure overload-induced RV 
failure

A typical clinical example of combined RV volume and 
pressure overload can be found in patients with PAH 
due to a congenital cardiac left-to-right shunt (PAH-
CHD). In these patients, the volume load is congenital 
and pressure load develops progressively due to increasing 
PVR as a result of pulmonary vascular remodeling (134). 
Although PAH is primarily a disease of the pulmonary 
vasculature, the state of the RV is the main determinant of  
survival (165). In PAH patients both with and without a 
shunt, the severity of RV failure is determined primarily 
by the degree of pressure overload and has been correlated 
closely to PVR (165). The contribution to RV failure 

of the additional volume overload component in shunt-
associated PAH is considerably less studied (137). 
During pressure load, increased preload may help to 
maintain adequate stroke volume via the Frank-Starling  
mechanism (79). However, combined loading conditions 
have also been associated with worse RV function 
and outcome in chronic settings (137). An alternative 
example of combined volume and pressure load is found 
in patients with repaired ToF, who often have residual 
pulmonary regurgitation as well as pulmonary branch 
stenosis: a combination that frequently leads to RV 
failure (74). Animal models for combined RV volume and 
pressure overload that mimic the conditions above can be 
categorized as: (I) shunt + PH induced by MCT or chronic 
overcirculation (PH), (II) shunt + PAB and (III) pulmonary 
regurgitation + PAB. The available models are listed in 
Table 2 and reviewed below.
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Shunt + PH
Aorto-caval shunt + monocrotaline 
The MCT+ aorto-caval Shunt model in rats was originally 
developed as a ‘double hit’ alternative to the MCT-only 
model. MCT-only rats lack so-called neointimal pulmonary 
vascular lesions that are characteristic of severe group 1 
PAH (156,166). It was demonstrated that the addition of 
increased pulmonary blood flow to MCT does lead to 
neointimal lesions and a more severe, progressive form of 
PAH (81,167), making it more relevant to human PAH. The 
MCT + Shunt model in rats combines a 60 mg/kg injection 
of monocrotalin at day 0 with the surgical construction of 
an aorto-caval shunt at day 7 (139). The shunt is created by 
inserting an 18G needle from the abdominal aorta into the 
adjacent caval vein, leading to pulmonary overcirculation 
and RV volume overload. The combination of MCT and 
the shunt leads to neomuscularization of the pulmonary 
arterioles at day 14, the formation of occlusive neointimal 
lesions from day 21, and RV failure around day 28, followed 
by death from day 28 to 35 (138-140). The shunt increases 
RV cardiac output two-to-three fold, as well as TAPSE. 
From day 21, occlusive vascular remodeling causes the 
PVR to rise, resulting in an increase in systolic RVP up to 
60mmHg and a decrease in pulmonary artery acceleration 
time. From day 21–35 TAPSE and cardiac output decrease 
progressively and RV hypertrophy occurs (138-140). The 
MCT + Shunt model has been implemented primarily to 
investigate new treatment strategies for pulmonary vascular 
disease, but can also be used to study combined volume and 
pressure overload of the RV, especially when PAB-, MCT- 
or Shunt-only rats are used additionally as a control or to 
compare different loading conditions (137,141). In a direct 
comparison with MCT-only or Shunt-only, MCT + Shunt 
results in a significantly compromised RV contractility, 
worse RV diastolic function, increased RV hypertrophy 
and more clinical signs of RV failure. Combined overload 
also had a strong additive effect on MYH-isoform switch, 
associated with pathologic RV remodeling (137).
Chronic shunting models
Chronic shunting leads to RV volume overload and 
secondary pulmonary hypertension, albeit mild. After 20 
weeks, adult rats with an aorto-caval shunt show an increase 
in mPAP up to 40mmHg indicating increased afterload. 
Parameters for RV systolic and diastolic function, such as 
dP/dtMAX, PRSW, and Tau were also decreased after 20 
weeks, but symptoms of RV failure were not observed (144). 
Aorto-caval shunt in pigs leads to an increase in mPAP 
from 10 to 15mmHg after 5 weeks (145). The pulmonary 

vascular histology in chronic shunting adult animals is 
characterized by mild medial hypertrophy, resembling an 
early, reversible stage of PAH associated with pre-tricuspid 
shunts (134,144). 
Fetal aorto-pulmonal shunt
An in utero aorto-pulmonary shunt model in lambs induces 
chronic overflow through the pulmonary vascular bed 
mimicking the induction of PAH seen in several congenital 
heart conditions (146). This induces hyperproliferation 
of the pulmonary artery smooth muscle cells (147), alters 
the redox environment (168), induces vascular dysfunction 
independent ly  of  the  NO-cGMP pathway (148) ,  
and induces  a sustained increase in pulmonary artery  
resistance (146). The phenotype in this model is mild 
PAH and RV dysfunction, but it is a solid animal model 
for investigating the mechanisms involved in congenital 
overflow induced PAH (149-151,169,170).

Shunt + PAB 
One study in dogs induced chronic RV volume overload by 
a bifemoral arteriovenous shunt. The shunts were closed 
after 3 months and then RV pressure load was created 
by PAB. The arteriovenous shunts increased cardiac 
output by 30%, and RVSP from 25 to 34 mmHg, but RV 
systolic or diastolic function were not changed compared 
to non-shunted controls (152). Both shunted and non-
shunted dogs were able to sustain a stable cardiac output 
after PAB. However, non-shunted controls responded to 
PAB by increasing contractility, whereas in shunted dogs 
contractility did not increase and cardiac output relied on 
the Frank-Starling mechanism as a primary adaptation to 
increased afterload.

Pulmonary regurgitation + PAB
In pigs, a combination of RV tract enlargement by 
transvalvular patch (volume overload via pulmonary 
regurgitation) and PAB, induced an increase in RV peak 
pressure to around 60 mmHg after 4 months, compared to 
16 mmHg in non-operated controls. End-systolic and end-
diastolic volumes were higher and ejection fraction was 
lower in operated pigs. These hemodynamic changes were 
also associated by cardiac fibrosis myocyte hypertrophy and 
inflammation (74).

Other genetic models of PAH and RV dysfunction

Intriguing genetic models have increased our knowledge 
about important pathophysiological mechanisms in 
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the development of RV failure and PH (171) including 
bone morphogenetic peptide receptor type 2 (BMPR-2) 
knockout mice (172), low-density lipoprotein receptor–
related protein 1 (LRP1) deficient mice (173), and insulin-
resistant male apoE-deficient mice (174). TGF-β1 
transgenic mice with heightened level of circulating 
TGF-β1 show pulmonary vascular remodeling and 
increased RV pressure in room air (175), and stimulation 
of the peroxisome proliferator-activated receptor gamma 
(PPARγ) by oral pioglitazone downstream of the BMP2 
receptor reversed PH in these TGF-β1 transgenic 
mice. In this work, PPARγ has been identified as a link 
between the anti-proliferative BMP2 and the proliferative 
TGF-β signaling pathways in vascular SMC known to be 
dysbalanced in human PAH (175). 

Mice with targeted deletion of PPARγ in smooth muscle 
cells spontaneously developed PAH (176). Moreover, 
selective deletion of PPARγ in cardiomyocytes leads to 
biventricular systolic dysfunction in mice underlining the 
centralbeneficial role of PPARγ not only in PH lungs but 
also RV dysfunction (110,177).

Future directions

There is a plethora of animals models of acute and chronic-
progressive RV dysfunction and failure. To ensure the best 
translation from bench to bedside we advocate that the 
researcher carefully select the animal model that is best 
suited to the research question at hand. In this review we 
present the available animal models for RV failure. We do, 
however, still need to refine and develop animal models of 
RV failure to create more precise pathophysiologic- and 
biologic modeling to ensure the best possible pre-clinical 
research and successful clinical translation (178-181).
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