9 research outputs found

    Increasing the permeability of Escherichia coli using MAC13243

    Get PDF
    The outer membrane of gram-negative bacteria is a permeability barrier that prevents the efficient uptake of molecules with large scaffolds. As a consequence, a number of antibiotic classes are ineffective against gram-negative strains. Herein we carried out a high throughput screen for small molecules that make the outer membrane of Escherichia coli more permeable. We identified MAC13243, an inhibitor of the periplasmic chaperone LolA that traffics lipoproteins from the inner to the outer membrane. We observed that cells were (1) more permeable to the fluorescent probe 1-N-phenylnapthylamine, and (2) more susceptible to large-scaffold antibiotics when sub-inhibitory concentrations of MAC13243 were used. To exclude the possibility that the permeability was caused by an off-target effect, we genetically reconstructed the MAC13243-phenotype by depleting LolA levels using the CRISPRi system

    The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications

    Get PDF
    Specialized epitope tags are widely used for detecting, manipulating or purifying proteins, but often their versatility is limited. Here, we introduce the ALFA-tag, a rationally designed epitope tag that serves a remarkably broad spectrum of applications in life sciences while outperforming established tags like the HA-, FLAG (R)- or myc-tag. The ALFA-tag forms a small and stable a-helix that is functional irrespective of its position on the target protein in prokaryotic and eukaryotic hosts. We characterize a nanobody (NbALFA) binding ALFA-tagged proteins from native or fixed specimen with low picomolar affinity. It is ideally suited for super-resolution microscopy, immunoprecipitations and Western blotting, and also allows in vivo detection of proteins. We show the crystal structure of the complex that enabled us to design a nanobody mutant (NbALFA(PE)) that permits efficient one-step purifications of native ALFA-tagged proteins, complexes and even entire living cells using peptide elution under physiological conditions

    Identification of a Receptor Subunit and Putative Ligand-Binding Residues Involved in the Bacillus megaterium QM B1551 Spore Germination Response to Glucose ▿

    No full text
    The molecular basis for the recognition of glucose as a germinant molecule by spores of Bacillus megaterium QM B1551 has been examined. A chromosome-located locus (BMQ_1820, renamed gerWB) is shown to encode a receptor B-protein subunit that interacts with the GerUA and GerUC proteins to form a receptor that is cognate for both glucose and leucine. GerWB represents the third receptor B protein that binds to glucose in this strain. Site-directed mutagenesis (SDM) experiments conducted on charged proline and aromatic residues predicted to reside in the transmembrane domains of a previously characterized receptor B protein, GerVB, reveal the importance to receptor function of a cluster of residues predicted to reside in the middle of the transmembrane 6 (TM6) domain. Reductions in the region of 70- to 165-fold in the apparent affinity of receptors for glucose in which Glu196, Tyr191, and Phe192 are individually replaced by SDM indicate that some or all of these residues may be directly involved in the binding of glucose and perhaps other germinants to the germinant receptor

    Discovery and Characterization of an ALFA-Tag-Specific Affinity Resin Optimized for Protein Purification at Low Temperatures in Physiological Buffer

    No full text
    Epitope tags are widely employed as tools to detect, purify and manipulate proteins in various experimental systems. We recently introduced the ALFA-tag together with two ALFA-specific single-domain antibodies (sdAbs), NbALFA and NbALFAPE, featuring high or intermediate affinity, respectively. Together, the ALFA system can be employed for a broad range of applications in microscopy, cell biology and biochemistry requiring either extraordinarily stable binding or mild competitive elution at room temperature. In order to further enhance the versatility of the ALFA system, we, here, aimed at developing an sdAb optimized for efficient elution at low temperatures. To achieve this, we followed a stringent selection scheme tailored to the specific application. We found candidates combining a fast capture of ALFA-tagged proteins with an efficient competitive elution at 4 °C in physiological buffer. Importantly, by employing a structure-guided semisynthetic library based on well-characterized NbALFA variants, the high specificity and consistent binding of proteins harboring ALFA-tags at either terminus could be maintained. ALFA SelectorCE, a resin presenting the cold-elutable NbALFACE, is an ideal tool for the one-step purification of sensitive protein complexes or temperature-labile enzymes. We believe that the general approach followed during the selection and screening can be transferred to other challenging sdAb discovery projects

    Identification of putative substrates for the periplasmic chaperone YfgM in Escherichia coli using quantitative proteomics

    No full text
    How proteins are trafficked, folded, and assembled into functional units in the cell envelope of Gram-negative bacteria is of significant interest. A number of chaperones have been identified, however, the molecular roles of these chaperones are often enigmatic because it has been challenging to assign substrates. Recently we discovered a novel periplasmic chaperone, called YfgM, which associates with PpiD and the SecYEG translocon and operates in a network that contains Skp and SurA. The aim of the study presented here was to identify putative substrates of YfgM. We reasoned that substrates would be incorrectly folded or trafficked when YfgM was absent from the cell, and thus more prone to proteolysis (the loss-of-function rationale). We therefore used a comparative proteomic approach to identify cell envelope proteins that were lower in abundance in a strain lacking yfgM, and strains lacking yfgM together with either skp or surA. Sixteen putative substrates were identified. The list contained nine inner membrane proteins (CusS, EvgS, MalF, OsmC, TdcB, TdcC, WrbA, YfhB, and YtfH) and seven periplasmic proteins (HdeA, HdeB, AnsB, Ggt, MalE, YcgK, and YnjE), but it did not include any lipoproteins or outer membrane proteins. Significantly, AnsB (an asparaginase) and HdeB (a protein involved in the acid stress response), were lower in abundance in all three strains lacking yfgM. For both genes, we ruled out the possibility that they were transcriptionally down-regulated, so it is highly likely that the corresponding proteins are misfolded/mistargeted and turned-over in the absence of YfgM. For HdeB we validated this conclusion in a pulse-chase experiment. The identification of HdeB and other cell envelope proteins as potential substrates will be a valuable resource for follow-up experiments that aim to delineate molecular the function of YfgM

    Heterologous overexpression of a monotopic glucosyltransferase (MGS) induces fatty acid remodeling in Escherichia coli membranes

    No full text
    The membrane protein monoglucosyldiacylglycerol synthase (MGS) from Acholeplasma laidlawii is responsible for the creation of intracellularmembraneswhen overexpressed in Escherichia coli (E. coli). The present study investigates time dependent changes in composition and properties of E. coli membranes during 22 h of MGS induction. The lipid/protein ratio increased by 38% in MGS-expressing cells compared to control cells. Time-dependent screening of lipids during this period indicated differences in fatty acid modeling. (1) Unsaturation levels remained constant for MGS cells (~62%) but significantly decreased in control cells (from 61% to 36%). (2) Cyclopropanated fatty acid content was lower in MGS producing cells while control cells had an increased cyclopropanation activity. Among all lipids, phosphatidylethanolamine (PE)was detected to be themost affected species in terms of cyclopropanation. Higher levels of unsaturation, lowered cyclopropanation levels and decreased transcription of the gene for cyclopropane fatty acid synthase (CFA) all indicate the tendency of the MGS protein to force E. coli membranes to alter its usual fatty acid composition

    Heterologous overexpression of a monotopic glucosyltransferase (MGS) induces fatty acid remodeling in Escherichia coli membranes :  

    Get PDF
    The membrane protein monoglucosyldiacylglycerol synthase (MGS) from Acholeplasma laidlawii is responsible for the creation of intracellular membranes when overexpressed in Escherichia coli (E. coli). The present study investigates time dependent changes in composition and properties of E. coli membranes during 22 h of MGS induction. The lipid/protein ratio increased by 38% in MGS-expressing cells compared to control cells. Time-dependent screening of lipids during this period indicated differences in fatty acid modeling. (1) Unsaturation levels remained constant for MGS cells (~ 62%) but significantly decreased in control cells (from 61% to 36%). (2) Cyclopropanated fatty acid content was lower in MGS producing cells while control cells had an increased cyclopropanation activity. Among all lipids, phosphatidylethanolamine (PE) was detected to be the most affected species in terms of cyclopropanation. Higher levels of unsaturation, lowered cyclopropanation levels and decreased transcription of the gene for cyclopropane fatty acid synthase (CFA) all indicate the tendency of the MGS protein to force E. coli membranes to alter its usual fatty acid composition

    Simple and Highly Efficient Detection of PSD95 Using a Nanobody and Its Recombinant Heavy-Chain Antibody Derivatives

    No full text
    The post-synaptic density protein 95 (PSD95) is a crucial scaffolding protein participating in the organization and regulation of synapses. PSD95 interacts with numerous molecules, including neurotransmitter receptors and ion channels. The functional dysregulation of PSD95 as well as its abundance and localization has been implicated with several neurological disorders, making it an attractive target for developing strategies able to monitor PSD95 accurately for diagnostics and therapeutics. This study characterizes a novel camelid single-domain antibody (nanobody) that binds strongly and with high specificity to rat, mouse, and human PSD95. This nanobody allows for more precise detection and quantification of PSD95 in various biological samples. We expect that the flexibility and unique performance of this thoroughly characterized affinity tool will help to further understand the role of PSD95 in normal and diseased neuronal synapses
    corecore