6,087 research outputs found
Regional Climate Services for Agriculture Project Presentation, and Demonstration and Discussion of Agricultural Maprooms: Launch Events at 44th Greater Horn of Africa Climate Outlook Forum
A joint collaborative initiative between ICPAC, CCAFS and IRI was launched publically
through a series of presentations and side sessions at the 44th Greater Horn of Africa Climate
Outlook Forum (GHACOF44) in Kampala, Uganda, on 30 August 2016. This initiative is part
of the Climate Services for Africa Project, a three-year project funded by the United States
Agency for International Development (USAID). The project is being implemented at ICPAC
and is intended to roll out climate services in support of Agriculture and Food Security to
ICPAC member states (all IGAD and EAC countries) with technical support from CCAFS
and IRI. The overall goal of this initiative is to strengthen the capacity of ICPAC and that of
ICPAC member countries to develop effective climate products and services for agriculture
and food security, for the benefit of smallholder farmers
Optimal Investment in the Development of Oil and Gas Field
Let an oil and gas field consists of clusters in each of which an investor
can launch at most one project. During the implementation of a particular
project, all characteristics are known, including annual production volumes,
necessary investment volumes, and profit. The total amount of investments that
the investor spends on developing the field during the entire planning period
we know. It is required to determine which projects to implement in each
cluster so that, within the total amount of investments, the profit for the
entire planning period is maximum.
The problem under consideration is NP-hard. However, it is solved by dynamic
programming with pseudopolynomial time complexity. Nevertheless, in practice,
there are additional constraints that do not allow solving the problem with
acceptable accuracy at a reasonable time. Such restrictions, in particular, are
annual production volumes. In this paper, we considered only the upper
constraints that are dictated by the pipeline capacity. For the investment
optimization problem with such additional restrictions, we obtain qualitative
results, propose an approximate algorithm, and investigate its properties.
Based on the results of a numerical experiment, we conclude that the developed
algorithm builds a solution close (in terms of the objective function) to the
optimal one
Spin injection between epitaxial Co2.4Mn1.6Ga and an InGaAs quantum well
Electrical spin injection in a narrow [100] In0.2Ga0.8As quantum well in a GaAs p-i-n optical device is reported. The quantum well is located 300 nm from an AlGaAs Schottky barrier and this system is used to compare the efficiencies and temperature dependences of spin injection from Fe and the Heusler alloy Co2.4Mn1.6Ga grown by molecular-beam epitaxy. At 5 K, the injected electron spin polarizations for Fe and Co2.4Mn1.6Ga injectors are 31% and 13%, respectively. Optical detection is carried out in the oblique Hanle geometry. A dynamic nuclear polarization effect below 10 K enhances the magnetic field seen by the injected spins in both devices. The Co2.4Mn1.6Ga thin films are found to have a transport spin polarization of similar to 50% by point contact Andreev reflection conductivity measurements. (c) 2005 American Institute of Physics
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations
Abstract
Health care-associated infections (HAI) are a major public health problem with a significant impact on morbidity, mortality and quality of life. They represent also an important economic burden to health systems worldwide. However, a large proportion of HAI are preventable through effective infection prevention and control (IPC) measures. Improvements in IPC at the national and facility level are critical for the successful containment of antimicrobial resistance and the prevention of HAI, including outbreaks of highly transmissible diseases through high quality care within the context of universal health coverage. Given the limited availability of IPC evidence-based guidance and standards, the World Health Organization (WHO) decided to prioritize the development of global recommendations on the core components of effective IPC programmes both at the national and acute health care facility level, based on systematic literature reviews and expert consensus. The aim of the guideline development process was to identify the evidence and evaluate its quality, consider patient values and preferences, resource implications, and the feasibility and acceptability of the recommendations. As a result, 11 recommendations and three good practice statements are presented here, including a summary of the supporting evidence, and form the substance of a new WHO IPC guideline
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
Accretion of Planetary Material onto Host Stars
Accretion of planetary material onto host stars may occur throughout a star's
life. Especially prone to accretion, extrasolar planets in short-period orbits,
while relatively rare, constitute a significant fraction of the known
population, and these planets are subject to dynamical and atmospheric
influences that can drive significant mass loss. Theoretical models frame
expectations regarding the rates and extent of this planetary accretion. For
instance, tidal interactions between planets and stars may drive complete
orbital decay during the main sequence. Many planets that survive their stars'
main sequence lifetime will still be engulfed when the host stars become red
giant stars. There is some observational evidence supporting these predictions,
such as a dearth of close-in planets around fast stellar rotators, which is
consistent with tidal spin-up and planet accretion. There remains no clear
chemical evidence for pollution of the atmospheres of main sequence or red
giant stars by planetary materials, but a wealth of evidence points to active
accretion by white dwarfs. In this article, we review the current understanding
of accretion of planetary material, from the pre- to the post-main sequence and
beyond. The review begins with the astrophysical framework for that process and
then considers accretion during various phases of a host star's life, during
which the details of accretion vary, and the observational evidence for
accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters
We propose and theoretically investigate a model to realize cascaded optical
nonlinearity with few atoms and photons in one-dimension (1D). The optical
nonlinearity in our system is mediated by resonant interactions of photons with
two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide.
Multi-photon transmission in the waveguide is nonreciprocal when the emitters
have different transition energies. Our theory provides a clear physical
understanding of the origin of nonreciprocity in the presence of cascaded
nonlinearity. We show how various two-photon nonlinear effects including
spatial attraction and repulsion between photons, background fluorescence can
be tuned by changing the number of emitters and the coupling between emitters
(controlled by the separation).Comment: 6 pages, 4 figure
Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases
A model for reactive porous transport during re-wetting of hardened concrete
A mathematical model is developed that captures the transport of liquid water
in hardened concrete, as well as the chemical reactions that occur between the
imbibed water and the residual calcium silicate compounds residing in the
porous concrete matrix. The main hypothesis in this model is that the reaction
product -- calcium silicate hydrate gel -- clogs the pores within the concrete
thereby hindering water transport. Numerical simulations are employed to
determine the sensitivity of the model solution to changes in various physical
parameters, and compare to experimental results available in the literature.Comment: 30 page
- …
