30 research outputs found

    Synthesis and reactions of thio- and selenoesters

    Get PDF
    Imperial Users onl

    Gyrodactylus triglopsi n. sp. (Monogenea: Gyrodactylidae) from the Gills of Triglops nybelini Jensen, 1944 (Teleostei: Cottidae) in the Barents Sea

    Get PDF
    Introduction Monogeneans of the genus Gyrodactylus were found on the gills of specimens of the bigeye sculpin Triglops nybelini Jensen, 1944 caught by trawl in the Barents Sea in January–February 2016. Methods Morphological preparations of the parasites were examined and photographed under a microscope at magnifications of × 100–1000 and morphometric analyses were carried out on 22 specimens using ImageJ2 software. Eight of the specimens used for the morphological comparisons were also subjected to molecular analyses by sequencing a region of the ribosomal DNA spanning partial 18S, the internal transcribed spacers 1 and 2 (ITS1 and 2), 5.8S and partial 28S and comparing this with other species through a BlastN-search in GenBank and through phylogenetic analyses. Results The morphology of the species from T. nybelini was markedly different to that of any of other species of Gyrodactylus. It is characterized by having relatively long hamulus roots, a character that it shares with two other species described from marine sculpins (Cottidae); G. armatus and G. maculosi. It also has a narrow rectangular ventral bar membrane with a posterior notch which it shares with G. maculosi only. Compared with all the seven species from marine Cottidae described so far, it has the smallest opisthaptoral hard parts. A comparison of the internal transcribed spacer (ITS) rDNA sequence with available sequences in GenBank and a phylogenetic analyses also showed it to be highly divergent from other sequences. Therefore, a new species is proposed, Gyrodactylus triglopsi n. sp. Conclusion Both the morphological and molecular analyses support the status of G. triglopsi as a new species. This is to our knowledge the first species of Gyrodactylus described from Triglops nybelini and the description extends the list of Gyrodactylus species found on fish in the Barents Sea to 17.publishedVersio

    Triploid Atlantic salmon and triploid Atlantic salmon × brown trout hybrids have better freshwater and early seawater growth than diploid counterparts

    Get PDF
    The use of reproductively sterile triploid salmonids would enhance the environmental sustainability of the aquaculture industry by preventing genetic exchange between escapees and wild conspecifics. To this end, we assessed smoltification and early seawater performance (241 days) following a yearling production cycle (i.e. spring smolts) in diploid and triploid female Atlantic salmon (Salmo salar) × male brown trout (Salmo trutta) hybrids compared to purebred diploid and triploid salmon. During freshwater rearing (n = 180/group), hybrids demonstrated a degree of bimodality in body size, significantly (p < 0.05) more so in diploid than triploid hybrids (11 and 37% in the lower mode, respectively) that was not seen in purebred salmon of either ploidy. This resulted in diploid hybrids being 66% smaller on average at sea transfer, whereas no hybridisation effect was seen in triploids, and both triploid groups were significantly heavier (16–43%) than diploid salmon. Irrespective of ploidy, lower mode hybrids grew poorly and showed low survival in seawater, suggesting they had failed to undergo smoltification. However, the upper mode diploid hybrids showed a similar Na+/K+-ATPase (NKA) enzyme activity surge during the spring as in diploid and triploid salmon, despite a higher ratio of the freshwater to seawater mRNA abundance of the NKA subunits (nkaα1a and nkaα1b) and a reduced plasma cortisol surge. At the end of the experimental period, both hybrids weighed significantly less than their salmon counterparts although the hybrid effect was again greater in diploids (71% smaller) than triploids (6% smaller). In addition, both triploid groups were on average heavier (15–22%) than diploid salmon. As such, both triploid Atlantic salmon and triploid hybrids can show enhanced growth performance from juveniles up to post-smolts compared to diploid salmon in an aquaculture setting.publishedVersio

    Experimental transmission of piscine orthoreovirus-1 (PRV-1) in different life stages of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta)

    Get PDF
    Piscine orthoreovirus -1 (PRV-1) causes the disease heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon, and the virus has been detected in wild anadromous Atlantic salmon and brown trout. However, the infection prevalence, viral kinetics, and disease severity in different life stages of Atlantic salmon and brown trout are unknown. The current study aimed to evaluate and compare susceptibility to PRV-1 infection and development of HSMI in different life stages of anadromous Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). We challenged Atlantic salmon and brown trout fry, parr, and post-smolts with PRV-1 by bath, cohabitation, or IP injection. The kinetics of viral infection and disease development were evaluated by RT-qPCR, in situ hybridization, and histology. Our results indicated that PRV-1 infection prevalence and viral kinetics depend on the developmental stage and challenge method in both Atlantic salmon and brown trout. All developmental stages of Atlantic salmon and brown trout can be infected with PRV-1. However, brown trout showed a lower infection prevalence, with positive cases exhibiting only mild infections without any pathological changes in the target organs, while all life stages of Atlantic salmon developed heart lesions characteristic of HSMI. These results strongly suggest that brown trout are less susceptible to PRV-1 infection than Atlantic salmon and further confirm the species-specific susceptibility and disease development for PRV-1 infection

    Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study

    Get PDF
    BACKGROUND: Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of developing cancer. For colorectal cancer the importance of mutations in mismatch repair genes has been extensively documented. Less is known about other DNA repair pathways in colorectal carcinogenesis. In this study we have focused on the XRCC1, XRCC3 and XPD genes, involved in base excision repair, homologous recombinational repair and nucleotide excision repair, respectively. METHODS: We used a case-control study design (157 carcinomas, 983 adenomas and 399 controls) to test the association between five polymorphisms in these DNA repair genes (XRCC1 Arg(194)Trp, Arg(280)His, Arg(399)Gln, XRCC3 Thr(241)Met and XPD Lys(751)Gln), and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (95% CI) were estimated by binary logistic regression model adjusting for age, gender, cigarette smoking and alcohol consumption. RESULTS: The XRCC1 280His allele was associated with an increased risk of adenomas (OR 2.30, 95% CI 1.19–4.46). The XRCC1 399Gln allele was associated with a reduction of risk of high-risk adenomas (OR 0.62, 95% CI 0.41–0.96). Carriers of the variant XPD 751Gln allele had an increased risk of low-risk adenomas (OR 1.40, 95% CI 1.03–1.89), while no association was found with risk of carcinomas. CONCLUSION: Our results suggest an increased risk for advanced colorectal neoplasia in individuals with the XRCC1 Arg(280)His polymorphism and a reduced risk associated with the XRCC1 Arg(399)Gln polymorphism. Interestingly, individuals with the XPD Lys(751)Gln polymorphism had an increased risk of low-risk adenomas. This may suggest a role in regression of adenomas

    Gyrodactylus triglopsi n. sp. (Monogenea: Gyrodactylidae) from the Gills of Triglops nybelini Jensen, 1944 (Teleostei: Cottidae) in the Barents Sea

    No full text
    Introduction Monogeneans of the genus Gyrodactylus were found on the gills of specimens of the bigeye sculpin Triglops nybelini Jensen, 1944 caught by trawl in the Barents Sea in January–February 2016. Methods Morphological preparations of the parasites were examined and photographed under a microscope at magnifications of × 100–1000 and morphometric analyses were carried out on 22 specimens using ImageJ2 software. Eight of the specimens used for the morphological comparisons were also subjected to molecular analyses by sequencing a region of the ribosomal DNA spanning partial 18S, the internal transcribed spacers 1 and 2 (ITS1 and 2), 5.8S and partial 28S and comparing this with other species through a BlastN-search in GenBank and through phylogenetic analyses. Results The morphology of the species from T. nybelini was markedly different to that of any of other species of Gyrodactylus. It is characterized by having relatively long hamulus roots, a character that it shares with two other species described from marine sculpins (Cottidae); G. armatus and G. maculosi. It also has a narrow rectangular ventral bar membrane with a posterior notch which it shares with G. maculosi only. Compared with all the seven species from marine Cottidae described so far, it has the smallest opisthaptoral hard parts. A comparison of the internal transcribed spacer (ITS) rDNA sequence with available sequences in GenBank and a phylogenetic analyses also showed it to be highly divergent from other sequences. Therefore, a new species is proposed, Gyrodactylus triglopsi n. sp. Conclusion Both the morphological and molecular analyses support the status of G. triglopsi as a new species. This is to our knowledge the first species of Gyrodactylus described from Triglops nybelini and the description extends the list of Gyrodactylus species found on fish in the Barents Sea to 17

    Gyrodactylus triglopsi n. sp. (Monogenea: Gyrodactylidae) from the Gills of Triglops nybelini Jensen, 1944 (Teleostei: Cottidae) in the Barents Sea

    No full text
    Introduction Monogeneans of the genus Gyrodactylus were found on the gills of specimens of the bigeye sculpin Triglops nybelini Jensen, 1944 caught by trawl in the Barents Sea in January–February 2016. Methods Morphological preparations of the parasites were examined and photographed under a microscope at magnifications of × 100–1000 and morphometric analyses were carried out on 22 specimens using ImageJ2 software. Eight of the specimens used for the morphological comparisons were also subjected to molecular analyses by sequencing a region of the ribosomal DNA spanning partial 18S, the internal transcribed spacers 1 and 2 (ITS1 and 2), 5.8S and partial 28S and comparing this with other species through a BlastN-search in GenBank and through phylogenetic analyses. Results The morphology of the species from T. nybelini was markedly different to that of any of other species of Gyrodactylus. It is characterized by having relatively long hamulus roots, a character that it shares with two other species described from marine sculpins (Cottidae); G. armatus and G. maculosi. It also has a narrow rectangular ventral bar membrane with a posterior notch which it shares with G. maculosi only. Compared with all the seven species from marine Cottidae described so far, it has the smallest opisthaptoral hard parts. A comparison of the internal transcribed spacer (ITS) rDNA sequence with available sequences in GenBank and a phylogenetic analyses also showed it to be highly divergent from other sequences. Therefore, a new species is proposed, Gyrodactylus triglopsi n. sp. Conclusion Both the morphological and molecular analyses support the status of G. triglopsi as a new species. This is to our knowledge the first species of Gyrodactylus described from Triglops nybelini and the description extends the list of Gyrodactylus species found on fish in the Barents Sea to 17

    Gyrodactylus triglopsi n. sp. (Monogenea: Gyrodactylidae) from the Gills of Triglops nybelini Jensen, 1944 (Teleostei: Cottidae) in the Barents Sea

    No full text
    Monogeneans of the genus Gyrodactylus were found on the gills of specimens of the bigeye sculpin Triglops nybelini Jensen, 1944 caught by trawl in the Barents Sea in January–February 2016

    Differences in emotional and pain-related language in tweets about dentists and medical doctors: Text-analysis of Twitter content

    Get PDF
    Background - Social media provides people with easy ways to communicate their attitudes and feelings to a wide audience. Many people, unfortunately, have negative associations and feelings about dental treatment due to former painful experiences. Previous research indicates that there might be a pervasive and negative occupational stereotype related to dentists and that this stereotype is expressed in many different venues, including movies and literature. Objective - This study investigates the language used in relation to dentists and medical doctors on the social media platform Twitter. The purpose is to compare the professions in terms of the use of emotional and pain-related words, which might underlie and reflect the pervasive negative stereotype identified in relation to dentists. We hypothesized that (A) tweets about dentists will have more negative emotion-related words than those about medical doctors and (B) pain-related words occur more frequently in tweets about dentists than in those about medical doctors. Methods - Twitter content (“tweets”) about dentists and medical doctors was collected using the Twitter application program interface 140Dev over a 4-week period in 2015, scanning the search terms “dentist” and “doctor”. Word content of the selected tweets was analyzed using Linguistic Inquiry and Word Count software. The research hypotheses were investigated using nonparametric Wilcoxon-Mann-Whitney tests. Results - Over 2.3 million tweets were collected in total, of which about one-third contained the word “dentist” and about two-thirds contained the word “doctor.” Hypothesis A was supported since a higher proportion of negative words was used in tweets about dentists than in those about medical doctors (z=−10.47; PPPPP<.001). Conclusions - The results from this study suggest that stereotypes regarding dentists and dental treatment are spread through social media such as Twitter and that social media also might represent an avenue for improving messaging and disseminating more positive attitudes toward dentists and dental treatment
    corecore