2,148 research outputs found
What do we need for robust and quantitative health impact assessment?
Health impact assessment (HIA) aims to make the health consequences of decisions explicit. Decision-makers need to know that the conclusions of HIA are robust. Quantified estimates of potential health impacts may be more influential but there are a number of concerns. First, not everything that can be quantified is important. Second, not everything that is being quantified at present should be, if this cannot be done robustly. Finally, not everything that is important can be quantified; rigorous qualitative HIA will still be needed for a thorough assessment. This paper presents the first published attempt to provide practical guidance on what is required to perform robust, quantitative HIA. Initial steps include profiling the affected populations, obtaining evidence from for postulated impacts, and determining how differences in subgoups' exposures and suscepibilities affect impacts. Using epidemiological evidence for HIA is different from carrying out a new study. Key steps in quantifying impacts are mapping the causal pathway, selecting appropriate outcome measures and selecting or developing a statistical model. Evidence from different sources is needed. For many health impacts, evidence of an effect may be scarce and estimates of the size and nature of the relationship may be inadequate. Assumptions and uncertainties must therefore be explicit. Modelled data can sometimes be tested against empirical data but sensitivity analyses are crucial. When scientific problems occur, discontinuing the study is not an option, as HIA is usually intended to inform real decisions. Both qualitative and quantitative elements of HIA must be performed robustly to be of value
NewsPad: Designing for Collaborative Storytelling in Neighborhoods
This paper introduces design explorations in neighborhood collaborative
storytelling. We focus on blogs and citizen journalism, which have been
celebrated as a means to meet the reporting needs of small local communities.
These bloggers have limited capacity and social media feeds seldom have the
context or readability of news stories. We present NewsPad, a content editor
that helps communities create structured stories, collaborate in real time,
recruit contributors, and syndicate the editing process. We evaluate NewsPad in
four pilot deployments and find that the design elicits collaborative story
creation.Comment: NewsPad: designing for collaborative storytelling in neighborhoods.
  In Proceedings of the extended abstracts of the 32nd annual ACM conference on
  Human factors in computing systems (CHI EA 2014
Organic nitrogen in aerosols and precipitation at Barbados and Miami: Implications regarding sources, transport and deposition to the western subtropical North Atlantic
The deposition of anthropogenic nitrogen (N) species is believed to have a significant impact on the oligotrophic North Atlantic, but the magnitude of ecological effects remains uncertain because the deposition of water soluble organic N (WSON) is poorly quantified. Here we present measurements of water soluble inorganic N (WSIN) and WSON in aerosol and rain at two subtropical North Atlantic time series sites: Barbados and Miami. WSON total deposition rates ranged from 17.9 mmol m−2 yr−1 to 49.6 mmol m−2 yr−1, contributing on average only 6–14% of total N deposition, less than half the poorly constrained global average which is typically cited as 30%. On an event basis, biomass burning and dust events yielded the largest concentrations of WSON. However, biomass burning was relatively infrequent and highly variable in composition, and much of the organic N associated with dust appeared to be externally adsorbed from pollution sources. Conversely, in Miami pollution made relatively small contributions of WSON on an event basis, but impacts were relatively frequent, making pollution one of the largest sources of WSON during the year. The largest contributor to WSON was volatile basic organic N (VBON) species, which were present at concentrations 1–2 times higher than particulate WSON. Despite VBON inputs, samples associated with pollution-source trajectories yielded much more inorganic N than WSON. Consequently, we would expect that in the future as anthropogenic N emissions increase, inorganic nitrogen will remain the dominant form of N that is deposited to the western North Atlantic
Phosphorus stress induced by atmospheric deposition to the surface waters of the subtropical North Atlantic
Inhibitors of SARS-CoV entry--identification using an internally-controlled dual envelope pseudovirion assay.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged as the causal agent of an endemic atypical pneumonia, infecting thousands of people worldwide. Although a number of promising potential vaccines and therapeutic agents for SARS-CoV have been described, no effective antiviral drug against SARS-CoV is currently available. The intricate, sequential nature of the viral entry process provides multiple valid targets for drug development. Here, we describe a rapid and safe cell-based high-throughput screening system, dual envelope pseudovirion (DEP) assay, for specifically screening inhibitors of viral entry. The assay system employs a novel dual envelope strategy, using lentiviral pseudovirions as targets whose entry is driven by the SARS-CoV Spike glycoprotein. A second, unrelated viral envelope is used as an internal control to reduce the number of false positives. As an example of the power of this assay a class of inhibitors is reported with the potential to inhibit SARS-CoV at two steps of the replication cycle, viral entry and particle assembly. This assay system can be easily adapted to screen entry inhibitors against other viruses with the careful selection of matching partner virus envelopes
Variable cavity volume tooling for high-performance resin infusion moulding
This article describes the research carried out by Warwick under the BAE Systems/EPSRC programme ‘Flapless Aerial Vehicles Integrated Interdisciplinary Research – FLAVIIR’. Warwick's aim in FLAVIIR was to develop low-cost innovative tooling technologies to enable the affordable manufacture of complex composite aerospace structures and to help realize the aim of the Grand Challenge of maintenance-free, low-cost unmanned aerial vehicle manufacture. This article focuses on the evaluation of a novel tooling process (variable cavity tooling) to enable the complete infusion of resin throughout non-crimp fabric within a mould cavity under low (0.1 MPa) injection pressure. The contribution of the primary processing parameters to the mechanical properties of a carbon composite component (bulk-head lug section), and the interactions between parameters, was determined. The initial mould gap (di) was identified as having the most significant effect on all measured mechanical properties, but complex interactions between di, n (number of fabric layers), and vc (mould closure rate) were observed. The process capability was low due to the manual processing, but was improved through process optimization, and delivered properties comparable to high-pressure resin transfer moulding
Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland
Macrophages are important regulators of branching morphogenesis during development and postnatally in the mammary gland. Regulation of macrophage dynamics during these processes can therefore have a profound impact on development. We demonstrate here that the developing mammary gland expresses high levels of inflammatory CC-chemokines, which are essential in vivo regulators of macrophage migration. We further demonstrate that the atypical chemokine receptor ACKR2, which scavenges inflammatory CC-chemokines, is differentially expressed during mammary gland development. We have previously shown that ACKR2 regulates macrophage dynamics during lymphatic vessel development. Here, we extend these observations to reveal a novel role for ACKR2 in regulating the postnatal development of the mammary gland. Specifically, we show that Ackr2−/− mice display precocious mammary gland development. This is associated with increased macrophage recruitment to the developing gland and increased density of the ductal epithelial network. These data demonstrate that ACKR2 is an important regulator of branching morphogenesis in diverse biological contexts and provide the first evidence of a role for chemokines and their receptors in postnatal development processes
A Novel Non-Intrusive Method to Resolve the Thermal-Dome-Effect of Pyranometers: Radiometric Calibration and Implications
Traditionally the calibration equation for pyranometers assumes that the measured solar irradiance is solely proportional to the thermopile's output voltage; therefore only a single calibration factor is derived. This causes additional measurement uncertainties because it does not capture sufficient information to correctly account for a pyranometer's thermal effect. In our updated calibration equation, temperatures from the pyranometer's dome and case are incorporated to describe the instrument's thermal behavior, and a new set of calibration constants are determined, thereby reducing measurement uncertainties. In this paper, we demonstrate why a pyranometer's uncertainty using the traditional calibration equation is always larger than a-few-percent, but with the new approach can become much less than 1% after the thermal issue is resolved. The highlighted calibration results are based on NIST-traceable light sources under controlled laboratory conditions. The significance of the new approach lends itself to not only avoiding the uncertainty caused by a pyranometer's thermal effect but also the opportunity to better isolate and characterize other instrumental artifacts, such as angular response and non-linearity of the thermopile, to further reduce additional uncertainties. We also discuss some of the implications, including an example of how the thermal issue can potentially impact climate studies by evaluating aerosol's direct-radiative effect using field measurements with and without considering the pyranometer's thermal effect. The results of radiative transfer model simulation show that a pyranometer's thermal effect on solar irradiance measurements at the surface can be translated into a significant alteration of the calculated distribution of solar energy inside the column atmosphere
Теоретичні засади дослідження виборчих технологій в електоральному процесі України та проблеми їх ефективності
Здійснено політологічний аналіз ефективності виборчих технологій та проаналізовано їх вплив на електоральні процеси в Україні.Осуществлен политологический анализ эффективности избирательных технологий и проанализировано их влияние на электоральные процессы в Украине.Political analysis of electoral technologies effectiveness and analyzes of their impact on the electoral process in Ukraine are made
Using metal ratios to detect emissions from municipal waste incinerators in ambient air pollution data, atmospheric environment
This study aimed to fingerprint emissions from six municipal waste incinerators (MWIs) and then test if these fingerprint ratios could be found in ambient air samples. Stack emissions tests from MWIs comprised As, Cd, Cr, Cu, Pb, Mn, Ni, V and Hg. Those pairs of metals showing good correlation (R > 0.75) were taken as tracers of MWI emissions and ratios calculated: Cu/Pb; Cd/Pb; Cd/Cu and Cr/Pb. Emissions ratios from MWIs differed significantly from those in ambient rural locations and those close to traffic. In order to identify MWI emissions in ambient air two analysis tests were carried out. The first, aimed to explore if MWI emissions dominate the ambient concentrations. The mean ambient ratio of each of the four metal ratios were calculated for six ambient sampling sites within 10 km from a MWI under stable meteorological conditions when the wind blew from the direction of the incinerator. Under these meteorological conditions ambient Cd/Pb was within the range of MWI emissions at one location, two monitoring sites measured mean Cr/Pb ratios representative of the MWI emissions and the four sites measured values of Cu/Pb within the range of MWI emissions. No ambient measurements had mean Cd/Cu ratios within the MWI values. Even though MWI was not the main source determining the ambient metal ratios, possible occasional plume grounding might have occurred. The second test then examined possible plume grounding by identifying the periods when all metal ratios differed from rural and traffic values at the same time and were consistent with MWI emissions. Metal ratios consistent with MWI emissions were found in ambient air within 10 km of one MWI for about 0.2% of study period. Emissions consistent with a second MWI were similarly detected at two ambient measurement sites about 0.1% and 0.02% of the time. Where plume grounding was detected, the maximum annual mean particulate matter (PM) from the MWI was estimated to be 0.03 μg m-3 to 0.12 μg m-3; 2-3 orders of magnitude smaller than background ambient PM10 concentrations. Ambient concentrations of Cr increased by 1.6-3.0 times when MWI emissions were detected. From our analysis we found no evidence of incinerator emissions in ambient metal concentrations around four UK MWIs. The six UK MWIs studied contributed little to ambient PM10 concentrations.</p
- …
