208 research outputs found

    Grouping of UVCB substances with dose-response transcriptomics data from human cell-based assays

    Get PDF
    The application of in vitro biological assays as new approach methodologies (NAMs) to support grouping of UVCB (unknown or variable composition, complex reaction products, and biological materials) substances has recently been demonstrated. In addition to cell-based phenotyping as NAMs, in vitro transcriptomic profiling is used to gain deeper mechanistic understanding of biological responses to chemicals and to support grouping and read-across. However, the value of gene expression profiling for characterizing complex substances like UVCBs has not been explored. Using 141 petroleum substance extracts, we performed dose-response transcriptomic profiling in human induced pluripotent stem cell (iPSC)-derived hepatocytes, cardiomyocytes, neurons, and endothelial cells, as well as cell lines MCF7 and A375. The goal was to determine whether transcriptomic data can be used to group these UVCBs and to further characterize the molecular basis for in vitro biological responses. We found distinct transcriptional responses for petroleum substances by manufacturing class. Pathway enrichment informed interpretation of effects of substances and UVCB petroleum-class. Transcriptional activity was strongly correlated with concentration of polycyclic aromatic compounds (PAC), especially in iPSC-derived hepatocytes. Supervised analysis using transcriptomics, alone or in combination with bioactivity data collected on these same substances/cells, suggest that transcriptomics data provide useful mechanistic information, but only modest additional value for grouping. Overall, these results further demonstrate the value of NAMs for grouping of UVCBs, identify informative cell lines, and provide data that could be used for justifying selection of substances for further testing that may be required for registration

    Pharmacokinetics and pharmacodynamics of t-cell bispecifics in the tumour interstitial fluid

    Get PDF
    The goal of this study is to investigate the pharmacokinetics in plasma and tumour interstitial fluid of two T-cell bispecifics (TCBs) with different binding affinities to the tumour target and to assess the subsequent cytokine release in a tumour-bearing humanised mouse model. Pharmacokinetics (PK) as well as cytokine data were collected in humanised mice after iv injection of cibisatamab and CEACAM5-TCB which are binding with different binding affinities to the tumour antigen carcinoembryonic antigen (CEA). The PK data were modelled and coupled to a previously published physiologically based PK model. Corresponding cytokine release profiles were compared to in vitro data. The PK model provided a good fit to the data and precise estimation of key PK parameters. High tumour interstitial concentrations were observed for both TCBs, influenced by their respective target binding affinities. In conclusion, we developed a tailored experimental method to measure PK and cytokine release in plasma and at the site of drug action, namely in the tumour. Integrating those data into a mathematical model enabled to investigate the impact of target affinity on tumour accumulation and can have implications for the PKPD assessment of the therapeutic antibodies.publishedVersio

    Flat Connections in Open String Mirror Symmetry

    Full text link
    We study a flat connection defined on the open-closed deformation space of open string mirror symmetry for type II compactifications on Calabi-Yau threefolds with D-branes. We use flatness and integrability conditions to define distinguished flat coordinates and the superpotential function at an arbitrary point in the open-closed deformation space. Integrability conditions are given for concrete deformation spaces with several closed and open string deformations. We study explicit examples for expansions around different limit points, including orbifold Gromov-Witten invariants, and brane configurations with several brane moduli. In particular, the latter case covers stacks of parallel branes with non-Abelian symmetry.Comment: 38 pages, 1 figure, v2: references adde

    Resilience trinity: safeguarding ecosystem functioning and services across three different time horizons and decision contexts

    Get PDF
    Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: i) reactive, when there is an imminent threat to ES resilience and a high pressure to act, ii) adjustive, when the threat is known in general but there is still time to adapt management, and iii) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology, and engineering are often implicitly focussing on provident, adjustive, or reactive resilience, respectively, but these different notions and of resilience and their corresponding social, ecological, and economic trade-offs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority

    Novel Rodent Models for Macular Research

    Get PDF
    BACKGROUND: Many disabling human retinal disorders involve the central retina, particularly the macula. However, the commonly used rodent models in research, mouse and rat, do not possess a macula. The purpose of this study was to identify small laboratory rodents with a significant central region as potential new models for macular research. METHODOLOGY/PRINCIPAL FINDINGS: Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli, laboratory rodents less commonly used in retinal research, were subjected to confocal scanning laser ophthalmoscopy (cSLO), fluorescein and indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT) using standard equipment (Heidelberg Engineering HRA1 and Spectralis™) adapted to small rodent eyes. The existence of a visual streak-like pattern was assessed on the basis of vascular topography, retinal thickness, and the topography of retinal ganglion cells and cone photoreceptors. All three species examined showed evidence of a significant horizontal streak-like specialization. cSLO angiography and retinal wholemounts revealed that superficial retinal blood vessels typically ramify and narrow into a sparse capillary net at the border of the respective area located dorsal to the optic nerve. Similar to the macular region, there was an absence of larger blood vessels in the streak region. Furthermore, the thickness of the photoreceptor layer and the population density of neurons in the ganglion cell layer were markedly increased in the visual streak region. CONCLUSIONS/SIGNIFICANCE: The retinal specializations of Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli resemble features of the primate macula. Hence, the rodents reported here may serve to study aspects of macular development and diseases like age-related macular degeneration and diabetic macular edema, and the preclinical assessment of therapeutic strategies
    • …
    corecore