45 research outputs found

    Insulin Gene Therapy for Type 1 Diabetes Mellitus: Unique Challenges Require Innovative Solutions

    Get PDF
    Type 1 diabetes mellitus (T1DM) is a disease characterized by chronically elevated blood glucose levels that results from the autoimmune destruction of the insulin-producing β cells of the pancreas. While treatment options exist, they all possess serious limitations. Insulin gene therapy provides a promising alternative aimed at replacing insulin production in native non-β cells. For insulin gene therapy applications to be successful in treating T1DM, a glucose-sensitive organ must be targeted for insulin expression, insulin production must be responsive to ever-changing blood glucose levels, and insulin expression must persist long term. In addition, the amount of insulin production is critical, as too little insulin would lead to poor glucose regulation and too much insulin would induce hypoglycemia, a potentially life-threatening state. Together, insulin gene therapy provides challenges that are absent with other gene therapy applications. In this chapter, we examine the challenges of insulin gene therapy and discuss how the two key components of insulin gene therapy—the insulin expression cassette and the delivery vehicle—can be tailored for the successful treatment of T1DM

    Risk factors for renal allograft loss in patients with systemic lupus erythematosus

    Get PDF
    Risk factors for renal allograft loss in patients with systemic lupus erythematosus. Controversy exists regarding the risk factors for renal allograft loss in patients with systemic lupus erythematosus (SLE). This study is a retrospective evaluation of each of these independent risk factors in 80 renal transplants for ESRD secondary to SLE done at our institution between 1971 and 1994. Our entire non-diabetic cohort of 1,966 renal transplants is used as a comparison group. Our results showed equivalent graft survival rates between lupus patients and the cohort at 1, 5 and 10 years (P = 0.56). However, an analysis of cyclosporine-era cadaver grafts revealed that the lupus group had poorer 5-year graft survival than the cohort (41% vs. 71%, P = 0.02). Evaluation of cyclosporine-era lupus graft survival showed significantly improved out-come in living-related lupus recipients over cadaver grafts at five years (89% vs. 41%, P = 0.003). The majority of grafts lost in the lupus cadaver recipients were due to chronic rejection. Rejection was increased in lupus recipients: 69% of lupus patients experienced rejection in the first year compared to 58% of controls (P = 0.01). Stratified for age, sex, race and cyclosporine use, this difference remained significant (P = 0.003, relative risk 1.7). Nephrectomy, splenectomy and 3 to 6 months of pretransplant dialysis did not improve graft survival. A dialysis duration of greater than 25 months predicted worse graft survival (P = 0.01). Among lupus patients, PRA did not correlate with graft outcome (P = 0.5), and HLA-identical cadaver grafts had improved outcomes compared to cadaver grafts. We conclude that acute and chronic rejection are the major risk factors for graft loss in lupus patients. The superior outcome of living-related over cadaver grafts in lupus patients suggests an increased role for living-related grafts. Pretransplant dialysis, nephrectomy and splenectomy are not indicated

    Association between carotid diameter and the advanced glycation endproduct Nε-Carboxymethyllysine (CML)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>N<sup>ε</sup>-Carboxymethyllysine (CML) is the major non-cross linking advanced glycation end product (AGE). CML is elevated in diabetic patients and apparent in atherosclerotic lesions. AGEs are associated with hypertension and arterial stiffness potentially by qualitative changes of elastic fibers. We investigated whether CML affects carotid and aortic properties in normoglycemic subjects.</p> <p>Methods</p> <p>Hundred-two subjects (age 48.2 ± 11.3 years) of the FLEMENGHO study were stratified according to the median of the plasma CML level (200.8 ng/ml; 25<sup>th </sup>percentile: 181.6 ng/ml, 75<sup>th </sup>percentile: 226.1 ng/ml) into "high CML" versus "low CML" as determined by ELISA. Local carotid artery properties, carotid intima media thickness (IMT), aortic pulse wave velocity (PWV), blood pressure and fetuin-A were analyzed. In 26 patients after carotidectomy, CML was visualized using immunohistochemistry.</p> <p>Results</p> <p>According to the CML median, groups were similar for anthropometric and biochemical data. Carotid diameter was enlarged in the "high" CML group (485.7 ± 122.2 versus 421.2 ± 133.2 μm; P < 0.05), in particular in participants with elevated blood pressure and with "high" CML ("low" CML: 377.9 ± 122.2 μm and "high" CML: 514.5 ± 151.6 μm; P < 0.001). CML was associated fetuin-A as marker of vascular inflammation in the whole cohort (r = 0.28; P < 0.01) and with carotid diameter in hypertensive subjects (r = 0.42; P < 0.01). CML level had no effect on aortic stiffness. CML was detected in the subendothelial space of human carotid arteries.</p> <p>Conclusion</p> <p>In normoglycemic subjects CML was associated with carotid diameter without adaptive changes of elastic properties and with fetuin-A as vascular inflammation marker, in particular in subjects with elevated blood pressure. This may suggest qualitative changes of elastic fibers resulting in a defective mechanotransduction, in particular as CML is present in human carotid arteries.</p

    The German National Registry of Primary Immunodeficiencies (2012-2017)

    Get PDF
    Introduction: The German PID-NET registry was founded in 2009, serving as the first national registry of patients with primary immunodeficiencies (PID) in Germany. It is part of the European Society for Immunodeficiencies (ESID) registry. The primary purpose of the registry is to gather data on the epidemiology, diagnostic delay, diagnosis, and treatment of PIDs. Methods: Clinical and laboratory data was collected from 2,453 patients from 36 German PID centres in an online registry. Data was analysed with the software Stata® and Excel. Results: The minimum prevalence of PID in Germany is 2.72 per 100,000 inhabitants. Among patients aged 1–25, there was a clear predominance of males. The median age of living patients ranged between 7 and 40 years, depending on the respective PID. Predominantly antibody disorders were the most prevalent group with 57% of all 2,453 PID patients (including 728 CVID patients). A gene defect was identified in 36% of patients. Familial cases were observed in 21% of patients. The age of onset for presenting symptoms ranged from birth to late adulthood (range 0–88 years). Presenting symptoms comprised infections (74%) and immune dysregulation (22%). Ninety-three patients were diagnosed without prior clinical symptoms. Regarding the general and clinical diagnostic delay, no PID had undergone a slight decrease within the last decade. However, both, SCID and hyper IgE- syndrome showed a substantial improvement in shortening the time between onset of symptoms and genetic diagnosis. Regarding treatment, 49% of all patients received immunoglobulin G (IgG) substitution (70%—subcutaneous; 29%—intravenous; 1%—unknown). Three-hundred patients underwent at least one hematopoietic stem cell transplantation (HSCT). Five patients had gene therapy. Conclusion: The German PID-NET registry is a precious tool for physicians, researchers, the pharmaceutical industry, politicians, and ultimately the patients, for whom the outcomes will eventually lead to a more timely diagnosis and better treatment

    Pancreas transplantation: the University of Wisconsin experience

    No full text
    International audienc

    Correction of Diabetic Hyperglycemia and Amelioration of Metabolic Anomalies by Minicircle DNA Mediated Glucose-Dependent Hepatic Insulin Production.

    Get PDF
    Type 1 diabetes mellitus (T1DM) is caused by immune destruction of insulin-producing pancreatic β-cells. Commonly used insulin injection therapy does not provide a dynamic blood glucose control to prevent long-term systemic T1DM-associated damages. Donor shortage and the limited long-term success of islet transplants have stimulated the development of novel therapies for T1DM. Gene therapy-based glucose-regulated hepatic insulin production is a promising strategy to treat T1DM. We have developed gene constructs which cause glucose-concentration-dependent human insulin production in liver cells. A novel set of human insulin expression constructs containing a combination of elements to improve gene transcription, mRNA processing, and translation efficiency were generated as minicircle DNA preparations that lack bacterial and viral DNA. Hepatocytes transduced with the new constructs, ex vivo, produced large amounts of glucose-inducible human insulin. In vivo, insulin minicircle DNA (TA1m) treated streptozotocin (STZ)-diabetic rats demonstrated euglycemia when fasted or fed, ad libitum. Weight loss due to uncontrolled hyperglycemia was reversed in insulin gene treated diabetic rats to normal rate of weight gain, lasting ∼1 month. Intraperitoneal glucose tolerance test (IPGT) demonstrated in vivo glucose-responsive changes in insulin levels to correct hyperglycemia within 45 minutes. A single TA1m treatment raised serum albumin levels in diabetic rats to normal and significantly reduced hypertriglyceridemia and hypercholesterolemia. Elevated serum levels of aspartate transaminase, alanine aminotransferase, and alkaline phosphatase were restored to normal or greatly reduced in treated rats, indicating normalization of liver function. Non-viral insulin minicircle DNA-based TA1m mediated glucose-dependent insulin production in liver may represent a safe and promising approach to treat T1DM

    FcER1: A Novel Molecule Implicated in the Progression of Human Diabetic Kidney Disease

    No full text
    Diabetic kidney disease (DKD) is a key microvascular complication of diabetes, with few therapies for targeting renal disease pathogenesis and progression. We performed transcriptional and protein studies on 103 unique blood and kidney tissue samples from patients with and without diabetes to understand the pathophysiology of DKD injury and its progression. The study was based on the use of 3 unique patient cohorts: peripheral blood mononuclear cell (PBMC) transcriptional studies were conducted on 30 patients with DKD with advancing kidney injury; Gene Expression Omnibus (GEO) data was downloaded, containing transcriptional measures from 51 microdissected glomerulous from patients with DKD. Additionally, 12 independent kidney tissue sections from patients with or without DKD were used for validation of target genes in diabetic kidney injury by kidney tissue immunohistochemistry and immunofluorescence. PBMC DKD transcriptional analysis, identified 853 genes (p &lt; 0.05) with increasing expression with progression of albuminuria and kidney injury in patients with diabetes. GEO data was downloaded, normalized, and analyzed for significantly changed genes. Of the 325 significantly up regulated genes in DKD glomerulous (p &lt; 0.05), 28 overlapped in PBMC and diabetic kidney, with perturbed FcER1 signaling as a significantly enriched canonical pathway. FcER1 was validated to be significantly increased in advanced DKD, where it was also seen to be specifically co-expressed in the kidney biopsy with tissue mast cells. In conclusion, we demonstrate how leveraging public and private human transcriptional datasets can discover and validate innate immunity and inflammation as key mechanistic pathways in DKD progression, and uncover FcER1 as a putative new DKD target for rational drug design
    corecore