1,342 research outputs found

    Modelling, Analysis and Experimental Validation of Clock Drift Effects in Low-Inertia Power Systems

    Get PDF
    Clock drift in digital controllers is of great relevance in many applications. Since almost all real clocks exhibit drifts, this applies in particular to networks composed of several individual units, each of which being operated with its individual clock. In the present paper, we demonstrate via extensive experiments on a microgrid in the megawatt range that clock drifts may impair frequency synchronization in low-inertia power systems. The experiments also show that-in the absence of a common clock-the standard model of an inverter as an ideal voltage source does not capture this phenomenon. As a consequence, we derive a suitably modified model of an inverter-interfaced unit that incorporates the phenomenon of clock drifts. By using the derived model, we investigate the effects of clock drifts on the performance of droop-controlled grid-forming inverters with regard to frequency synchronization and active power sharing. The modeling and analysis is validated via extensive experiments on a microgrid in the megawatt range

    Steady state evaluation of distributed secondary frequency control strategies for microgrids in the presence of clock drifts

    Get PDF
    Secondary frequency control, i.e., the task of restoring the network frequency to its nominal value following a disturbance, is an important control objective in microgrids. In the present paper, we compare distributed secondary control strategies with regard to their behaviour under the explicit consideration of clock drifts. In particular we show that, if not considered in the tuning procedure, the presence of clock drifts may impair an accurate frequency restoration and power sharing. As a consequence, we derive tuning criteria such that zero steady state frequency deviation and power sharing is achieved even in the presence of clock drifts. Furthermore, the effects of clock drifts of the individual inverters on the different control strategies are discussed analytically and in a numerical case study

    Evaluation of Xpert® MTB/RIF and ustar easyNAT™ TB IAD for diagnosis of tuberculous lymphadenitis of children in Tanzania : a prospective descriptive study

    Get PDF
    Fine needle aspiration biopsy has become a standard approach for diagnosis of peripheral tuberculous lymphadenitis. The aim of this study was to compare the performance of Xpert MTB/RIF and Ustar EasyNAT TB IAD nucleic acid amplification assays, against acid-fast bacilli microscopy, cytology and mycobacterial culture for the diagnosis of TB lymphadenitis in children from a TB-endemic setting in Tanzania.; Children of 8 weeks to 16 years of age, suspected of having TB lymphadenitis, were recruited at a district hospital in Tanzania. Fine needle aspirates of lymph nodes were analysed using acid-fast bacilli microscopy, liquid TB culture, cytology, Xpert MTB/RIF and EasyNAT. Latent class analysis and comparison against a composite reference standard comprising "culture and/or cytology" was done, to assess the performance of Xpert MTB/RIF and EasyNAT for the diagnosis of TB lymphadenitis.; Seventy-nine children were recruited; 4 were excluded from analysis. Against a composite reference standard of culture and/or cytology, Xpert MTB/RIF and EasyNAT had a sensitivity and specificity of 58 % and 93 %; and 19 % and 100 % respectively. Relative to latent class definitions, cytology had a sensitivity of 100 % and specificity of 94.7 %.; Combining clinical assessment, cytology and Xpert MTB/RIF may allow for a rapid and accurate diagnosis of childhood TB lymphadenitis. Larger diagnostic evaluation studies are recommended to validate these findings and on Xpert MTB/RIF to assess its use as a solitary initial test for TB lymphadenitis in children

    Droop-controlled inverter-based microgrids are robust to clock drifts

    Get PDF
    Clock drift in digital controllers is of great relevance in many applications. Since almost all real clocks exhibit drifts, this applies in particular to networks composed of several individual units, each of which being operated with its individual clock. In the present work, we investigate the effect of clock drifts in inverter-based microgrids. Via a suitable model that incorporates this phenomenon, we prove that clock inaccuracies hamper synchronization in microgrids, in which the individual inverters are operated with a fixed uniform constant electrical frequency. In addition, we show that the well-known frequency droop control renders stability of a lossless microgrid robust with respect to clock inaccuracies. This claim is established by using stability results reported previously by the authors for lossless inverter-based microgrids with ideal clocks. We also discuss the effect of clock drifts on active power sharing. The analysis is illustrated via a simulation example

    Experimental Demonstration of Five-photon Entanglement and Open-destination Teleportation

    Full text link
    Universal quantum error-correction requires the ability of manipulating entanglement of five or more particles. Although entanglement of three or four particles has been experimentally demonstrated and used to obtain the extreme contradiction between quantum mechanics and local realism, the realization of five-particle entanglement remains an experimental challenge. Meanwhile, a crucial experimental challenge in multi-party quantum communication and computation is the so-called open-destination teleportation. During open-destination teleportation, an unknown quantum state of a single particle is first teleported onto a N-particle coherent superposition to perform distributed quantum information processing. At a later stage this teleported state can be readout at any of the N particles for further applications by performing a projection measurement on the remaining N-1 particles. Here, we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation. In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single photon state to achieve the experimental goals. The methods developed in our experiment would have various applications e.g. in quantum secret sharing and measurement-based quantum computation.Comment: 19 pages, 4 figures, submitted for publication on 15 October, 200

    Selective decontamination of the digestive tract: all questions answered?

    Get PDF
    Although many studies have shown beneficial effects of SDD on the incidence of respiratory tract infections, SDD did not become routine practice because mortality reduction was not demonstrated in individual trials, beneficial effects on duration of ventilation, ICU stay or hospital stay were not demonstrated, cost-efficacy had not been demonstrated, and selection of antibiotic resistance was considered a serious side-effect. A recent study has now shown improved patient survival and lower prevalence of antibiotic resistance in patients receiving SDD. Why could this study show mortality reduction, where all others studies had failed before? And do the microbiological data unequivocally prove protective effects of SDD on emergence of antibiotic resistance? Interestingly, the reported mortality reductions exceeds even the most optimistic predictions from previous meta-analyses, but a clear explanation is not yet evident. The data on antibiotic resistance, however, are rather superficial and do not allow to interpret the underlying epidemiological dynamics. Therefore, the recent findings are provocative and shed new light on the SDD issue, warranting studies confirming its beneficial effects but also addressing several important aspects related to study design

    Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves

    Get PDF
    peer-reviewedBackground There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine. Results There was a significant (P < 0.05) increase in BPI3V-specific IgA in the nasal mucus of the BPI3V nanoparticle vaccine group alone. Following administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P < 0.05) rise over the period of study. However, the cell mediated immune response observed didn’t show any significant rise in any of the treatment groups. Conclusion Calves administered the intranasal nanoparticle vaccine induced significantly greater mucosal IgA responses, compared to the other treatment groups. This suggests an enhanced, sustained mucosal-based immunological response to the BPI3V nanoparticle vaccine in the face of pre-existing antibodies to BPI3V, which are encouraging and potentially useful characteristics of a candidate vaccine. However, ability of nanoparticle vaccine in eliciting cell mediated immune response needs further investigation. More sustained local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak

    Quarterly U.S. unemployment: cycles, seasons and asymmetries

    Get PDF
    This paper documents three stylized facts for the quarterly unemployment rate in the United States. Firstly, unemployment is asymmetric over the business cycle, i.e. it rises sharply in recessions and it falls slowly in expansions. Secondly, its seasonal fluctuations are not constant across the two business cycle stages in the sense that there is less seasonality in recession periods. Thirdly, the effect of shocks to the unemployment rate in expansions seem transitory, while this effect is permanent in recessions. Some implications of these stylized facts for empirical macroeconomics and seasonal adjustment are discussed

    Is there evidence for accelerated polyethylene wear in uncemented compared to cemented acetabular components? A systematic review of the literature

    Get PDF
    Joint arthroplasty registries show an increased rate of aseptic loosening in uncemented acetabular components as compared to cemented acetabular components. Since loosening is associated with particulate wear debris, we postulated that uncemented acetabular components demonstrate a higher polyethylene wear rate than cemented acetabular components in total hip arthroplasty. We performed a systematic review of the peer-reviewed literature, comparing the wear rate in uncemented and cemented acetabular components in total hip arthroplasty. Studies were identified using MEDLINE (PubMed), EMBASE and the Cochrane Central Register of Controlled Trials. Study quality was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The search resulted in 425 papers. After excluding duplicates and selection based on title and abstracts, nine studies were found eligible for further analysis: two randomised controlled trials, and seven observational studies. One randomised controlled trial found a higher polyethylene wear rate in uncemented acetabular components, while the other found no differences. Three out of seven observational studies showed a higher polyethylene wear in uncemented acetabular component fixation; the other four studies did not show any differences in wear rates. The available evidence suggests that a higher annual wear rate may be encountered in uncemented acetabular components as compared to cemented components

    Coalescent-based genome analyses resolve the early branches of the euarchontoglires

    Get PDF
    Despite numerous large-scale phylogenomic studies, certain parts of the mammalian tree are extraordinarily difficult to resolve. We used the coding regions from 19 completely sequenced genomes to study the relationships within the super-clade Euarchontoglires (Primates, Rodentia, Lagomorpha, Dermoptera and Scandentia) because the placement of Scandentia within this clade is controversial. The difficulty in resolving this issue is due to the short time spans between the early divergences of Euarchontoglires, which may cause incongruent gene trees. The conflict in the data can be depicted by network analyses and the contentious relationships are best reconstructed by coalescent-based analyses. This method is expected to be superior to analyses of concatenated data in reconstructing a species tree from numerous gene trees. The total concatenated dataset used to study the relationships in this group comprises 5,875 protein-coding genes (9,799,170 nucleotides) from all orders except Dermoptera (flying lemurs). Reconstruction of the species tree from 1,006 gene trees using coalescent models placed Scandentia as sister group to the primates, which is in agreement with maximum likelihood analyses of concatenated nucleotide sequence data. Additionally, both analytical approaches favoured the Tarsier to be sister taxon to Anthropoidea, thus belonging to the Haplorrhine clade. When divergence times are short such as in radiations over periods of a few million years, even genome scale analyses struggle to resolve phylogenetic relationships. On these short branches processes such as incomplete lineage sorting and possibly hybridization occur and make it preferable to base phylogenomic analyses on coalescent methods
    • …
    corecore