1,901 research outputs found

    How well can the migration component of regional population change be predicted? A machine learning approach applied to German municipalities

    Get PDF
    For several decades, demographic forecasts had predicted that the majority of Germany’s cities and rural areas would experience population decline in the early 21st century. Instead, recent trends show a growing population size in three out of every four German districts. As a result, there are currently severe shortages of housing and childcare in regions that were projected to decline but have instead grown in recent years. Other regions, by contrast, continue to lose young people in particular. Most of these differences between regions stem from within-country as well as international migration. An important question for both regional demographic research as well as local policy-makers is thus how well net migration rates in cities and rural districts can be predicted several years into the future. In this study, we develop models that predict migration (both within-country as well as international migration) at the level of municipalities for two demographic groups, namely young people aged 18 to 24 years, and families (people aged 30 to 49 years and underage children). We collect data on economic, demographic and other characteristics such as distances to large cities or universities for around 3,000 German municipalities (Gemeinden). The model is trained on a subset of these data from the period 2005-2009 and predicts net migration rates among young people on an unseen test dataset in the future (i.e. for the period 2011-2015). The results show that the model can predict future net migration by young people aged 18 to 24 years reasonably well (R² > 0.5), although there were quite significant changes during the period under study, for example refugee immigration to Germany. Family migration, on the other hand, cannot be predicted equally well (R² = 0.25). Some important lessons emerge concerning the predictability of regional and international migration and the usefulness of demographic forecasts for local policy-makers

    Metabolic changes associated with two endocrine abnormalities in dogs : elevated fructosamine and low thyroxine

    Get PDF
    Introduction Metabolomics studies in canine endocrine abnormalities are sparse and basic information on these abnormalities must be generated. Objectives To characterize the metabolic changes associated with elevated fructosamine, reflecting poor glycemic control, and low thyroxine, a thyroid hormone controlling metabolism. Methods Leftovers of clinical serum samples; 25 controls, 79 high fructosamine, and 47 low thyroxine, were analyzed using H-1 NMR and differences were evaluated using Firth logistic regression. Results Both high fructosamine and low thyroxine were associated with changes in concentrations of multiple metabolites, including glycoprotein acetyls and lipids. Conclusion These findings suggest promising makers for further research and clinical validation.Peer reviewe

    Independent Delta/Theta Rhythms in the Human Hippocampus and Entorhinal Cortex

    Get PDF
    Theta oscillations in the medial temporal lobe (MTL) of mammals are involved in various functions such as spatial navigation, sensorimotor integration, and cognitive processing. While the theta rhythm was originally assumed to originate in the medial septum, more recent studies suggest autonomous theta generation in the MTL. Although coherence between entorhinal and hippocampal theta activity has been found to influence memory formation, it remains unclear whether these two structures can generate theta independently. In this study we analyzed intracranial electroencephalographic (EEG) recordings from 22 patients with unilateral hippocampal sclerosis undergoing presurgical evaluation prior to resection of the epileptic focus. Using a wavelet-based, frequency-band-specific measure of phase synchronization, we quantified synchrony between 10 different recording sites along the longitudinal axis of the hippocampal formation in the non-epileptic brain hemisphere. We compared EEG synchrony between adjacent recording sites (i) within the entorhinal cortex, (ii) within the hippocampus, and (iii) between the hippocampus and entorhinal cortex. We observed a significant interregional gap in synchrony for the delta and theta band, indicating the existence of independent delta/theta rhythms in different subregions of the human MTL. The interaction of these rhythms could represent the temporal basis for the information processing required for mnemonic encoding and retrieval

    A novel production route and process optimization of biomass-derived paraffin wax for pharmaceutical application

    Get PDF
    The Biomass to Liquid (BtL) Fischer-Tropsch (FT) route converts lignocellulosic feedstock to renewable hydrocarbons. This, paper shows a novel production route for biomass-derived synthetic paraffin wax via gasification of lignocellulosic feedstock, Fischer-Tropsch synthesis (FTS) and hydrofining. The Fischer-Tropsch wax was fractionated, refined and analyzed with respect to compliance to commercial standards. The fractioned paraffin waxes were hydrofined using a commercial sulfide NiMo–Al2O3 catalyst and a trickle bed reactor. A parametric variation was performed to optimize the hydrofining process. It was shown that the produced medium-melt paraffin wax could fulfill the requirements for “Paraffinum solidum” defined by the European Pharmacopoeia (Ph. Eur). The high-melt wax fraction showed potential to be used as food packaging additive. Furthermore, the renewable wax was analyzed regarding PAH content and it was shown that the hydrofined wax was quasi-PAH-free

    Renewable Electric Energy Integration: Quantifying the Value of Design of Markets for International Transmission Capacity

    Get PDF
    Integrating large quantities of supply-driven renewable electricity generation remains a political and operational challenge. One of the main obstacles in Europe to installing at least 200 GWs of power from variable renewable sources is how to deal with the insufficient network capacity and the congestion that will result from new flow patterns. We model the current methodology for controlling congestion at international borders and compare its results, under varying penetrations of wind power, with a model that simulates an integrated European network that utilises nodal/localised marginal pricing. The nodal pricing simulations illustrate that congestion - and price - patterns vary considerably between wind scenarios and within countries, and that a nodal price regime could make fuller use of existing EU network capacity, introducing substantial operational cost savings and reducing marginal power prices in the majority of European countries.Power market design, renewable power integration, congestion management, transmission economics

    Metabolomic serum abnormalities in dogs with hepatopathies

    Get PDF
    Hepatopathies can cause major metabolic abnormalities in humans and animals. This study examined differences in serum metabolomic parameters and patterns in left-over serum samples from dogs with either congenital portosystemic shunts (cPSS, n = 24) or high serum liver enzyme activities (HLEA, n = 25) compared to control dogs (n = 64). A validated targeted proton nuclear magnetic resonance spectroscopy platform was used to assess 123 parameters. Principal component analysis of the serum metabolome demonstrated distinct clustering among individuals in each group, with the cluster of HLEA being broader compared to the other groups, presumably due to the wider spectrum of hepatic diseases represented in these samples. While younger and older adult control dogs had very similar metabolomic patterns and clusters, there were changes in many metabolites in the hepatopathy groups. Higher phenylalanine and tyrosine concentrations, lower branched-chained amino acids (BCAAs) concentrations, and altered fatty acid parameters were seen in cPSS dogs compared to controls. In contrast, dogs with HLEA had increased concentrations of BCAAs, phenylalanine, and various lipoproteins. Machine learning based solely on the metabolomics data showed excellent group classification, potentially identifying a novel tool to differentiate hepatopathies. The observed changes in metabolic parameters could provide invaluable insight into the pathophysiology, diagnosis, and prognosis of hepatopathies.Peer reviewe

    Metabolomic Abnormalities in Serum from Untreated and Treated Dogs with Hyper- and Hypoadrenocorticism

    Get PDF
    The adrenal glands play a major role in metabolic processes, and both excess and insufficient serum cortisol concentrations can lead to serious metabolic consequences. Hyper- and hypoadrenocorticism represent a diagnostic and therapeutic challenge. Serum samples from dogs with untreated hyperadrenocorticism (n = 27), hyperadrenocorticism undergoing treatment (n = 28), as well as with untreated (n = 35) and treated hypoadrenocorticism (n = 23) were analyzed and compared to apparently healthy dogs (n = 40). A validated targeted proton nuclear magnetic resonance (H-1 NMR) platform was used to quantify 123 parameters. Principal component analysis separated the untreated endocrinopathies. The serum samples of dogs with untreated endocrinopathies showed various metabolic abnormalities with often contrasting results particularly in serum concentrations of fatty acids, and high- and low-density lipoproteins and their constituents, which were predominantly increased in hyperadrenocorticism and decreased in hypoadrenocorticism, while amino acid concentrations changed in various directions. Many observed serum metabolic abnormalities tended to normalize with medical treatment, but normalization was incomplete when compared to levels in apparently healthy dogs. Application of machine learning models based on the metabolomics data showed good classification, with misclassifications primarily observed in treated groups. Characterization of metabolic changes enhances our understanding of these endocrinopathies. Further assessment of the recognized incomplete reversal of metabolic alterations during medical treatment may improve disease management.Peer reviewe

    Independent Delta/Theta Rhythms in the Human Hippocampus and Entorhinal Cortex

    Get PDF
    Theta oscillations in the medial temporal lobe (MTL) of mammals are involved in various functions such as spatial navigation, sensorimotor integration, and cognitive processing. While the theta rhythm was originally assumed to originate in the medial septum, more recent studies suggest autonomous theta generation in the MTL. Although coherence between entorhinal and hippocampal theta activity has been found to influence memory formation, it remains unclear whether these two structures can generate theta independently. In this study we analyzed intracranial electroencephalographic (EEG) recordings from 22 patients with unilateral hippocampal sclerosis undergoing presurgical evaluation prior to resection of the epileptic focus. Using a wavelet-based, frequency-band-specific measure of phase synchronization, we quantified synchrony between 10 different recording sites along the longitudinal axis of the hippocampal formation in the non-epileptic brain hemisphere. We compared EEG synchrony between adjacent recording sites (i) within the entorhinal cortex, (ii) within the hippocampus, and (iii) between the hippocampus and entorhinal cortex. We observed a significant interregional gap in synchrony for the delta and theta band, indicating the existence of independent delta/theta rhythms in different subregions of the human MTL. The interaction of these rhythms could represent the temporal basis for the information processing required for mnemonic encoding and retrieval

    Metabolomics during canine pregnancy and lactation

    Get PDF
    During pregnancy and parturition, female dogs have to cope with various challenges such as providing nutrients for the growth of the fetuses, hormonal changes, whelping, nursing, milk production, and uterine involution. Metabolomic research has been used to characterize the influence of several factors on metabolism such as inter- and intra-individual factors, feeding, aging, inter-breed differences, drug action, behavior, exercise, genetic factors, neuter status, and pathologic processes. Aim of this study was to identify metabolites showing specific changes in blood serum at the different phases of pregnancy and lactation. In total, 27 privately owned female dogs of 21 different breeds were sampled at six time points: during heat, in early, mid and late pregnancy, at the suspected peak of lactation and after weaning. A validated and highly automated canine-specific NMR metabolomics technology was utilized to quantitate 123 measurands. It was evaluated which metabolite concentrations showed significant changes between the different time points. Metabolites were then grouped into five clusters based on concentration patterns and biochemical relationships between the metabolites: high in mid-pregnancy, low in mid-pregnancy, high in late pregnancy, high in lactation, and low in lactation. Several metabolites such as albumin, glycoprotein acetyls, fatty acids, lipoproteins, glucose, and some amino acids show similar patterns during pregnancy and lactation as shown in humans. The patterns of some other parameters such as branched-chain amino acids, alanine and histidine seem to differ between these species. For most metabolites, it is yet unstudied whether the observed changes arise from modified resorption from the intestines, modified production, or metabolism in the maternal or fetal tissues. Hence, further species-specific metabolomic research may support a broader understanding of the physiological changes caused by pregnancy that are likely to be key for the normal fetal growth and development. Our findings provide a baseline of normal metabolic changes during healthy canine pregnancy and parturition. Combined with future metabolomics findings, they may help monitor vital functions of pre-, intra-, and post-partum bitches and may allow early detection of illness
    corecore