42 research outputs found

    Relationship between the tissue-specificity of mouse gene expression and the evolutionary origin and function of the proteins

    Get PDF
    BACKGROUND: The combination of complete genome sequence information with expression data enables us to characterize the relationship between a protein's evolutionary origin or functional category and its expression pattern. In this study, mouse proteins were assigned into functional and phyletic groups and the gene expression patterns of the different protein groupings were examined by microarray analysis in various mouse tissues. RESULTS: Our results suggest that the proteins that are universally distributed in all tissues are predominantly enzymes and transporters. In contrast, the tissue-specific set is dominated by regulatory proteins (signal transduction and transcription factors). An increased tendency to tissue-specificity is observed for metazoan-specific proteins. As the composition of the phyletic groups highly correlates with that of the functional groups, the data were tested in order to determine which of the two factors - function or phyletic age - is dominant in shaping the expression profile of a protein. The observed differences in expression patterns of genes between functional groups were found mainly to reflect their different phyletic origin. The connection between tissue specificity and phyletic age cannot be explained by the recent rate of evolution. Finally, although metazoan-specific proteins tend to be tissue-specific compared with phyletically conserved proteins present in all domains of life, many such 'universal' proteins are also tissue-specific. CONCLUSION: The minimal cellular transcriptome of the metazoan cell differs from that of the ancestral unicellular eukaryote: new functions were added (metazoan-specific proteins), whilst other functions became specialized and no longer took place in all cells (tissue-specific pre-metazoan proteins)

    Genome-Scale CRISPRa Screen Identifies Novel Factors for Cellular Reprogramming.

    Get PDF
    Primed epiblast stem cells (EpiSCs) can be reverted to a pluripotent embryonic stem cell (ESC)-like state by expression of single reprogramming factor. We used CRISPR activation to perform a genome-scale, reprogramming screen in EpiSCs and identified 142 candidate genes. Our screen validated a total of 50 genes, previously not known to contribute to reprogramming, of which we chose Sall1 for further investigation. We show that Sall1 augments reprogramming of mouse EpiSCs and embryonic fibroblasts and that these induced pluripotent stem cells are indeed fully pluripotent including formation of chimeric mice. We also demonstrate that Sall1 synergizes with Nanog in reprogramming and that overexpression in ESCs delays their conversion back to EpiSCs. Lastly, using RNA sequencing, we identify and validate Klf5 and Fam189a2 as new downstream targets of Sall1 and Nanog. In summary, our work demonstrates the power of using CRISPR technology in understanding molecular mechanisms that mediate complex cellular processes such as reprogramming

    Novel stem cell technologies are powerful tools to understand the impact of human factors on Plasmodium falciparum malaria

    Get PDF
    © 2023 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Plasmodium falciparum parasites have a complex life cycle, but the most clinically relevant stage of the disease is the invasion of erythrocytes and the proliferation of the parasite in the blood. The influence of human genetic traits on malaria has been known for a long time, however understanding the role of the proteins involved is hampered by the a nuclear nature of erythrocytes that makes them inaccessible to genetic tools. Here we overcome this limitation using stem cells to generate erythroid cells with an in-vitro differentiation protocol and assess parasite invasion with an adaptation of flow cytometry to detect parasite hemozoin. We combine this strategy with reprogramming of patient cells to Induced Pluripotent Stem Cells and genome editing to understand the role of key genes and human traits in malaria infection. We show that deletion of basigin ablates invasion while deletion of ATP2B4 has a minor effect and that erythroid cells from reprogrammed patient-derived HbBart α-thalassemia samples poorly support infection. The possibility to obtain patient-secific and genetically modifed erythoid cells offers an unparalleled opportunity to study the role of human genes and polymorphisms in malaria allowing preservation of the genomic background to demonstrate their function and understand their mechanisms.Peer reviewe

    A Genome-Wide Knockout Screen in Human Macrophages Identified Host Factors Modulating Salmonella Infection.

    Get PDF
    A genome-scale CRISPR knockout library screen of THP-1 human macrophages was performed to identify loss-of-function mutations conferring resistance to Salmonella uptake. The screen identified 183 candidate genes, from which 14 representative genes involved in actin dynamics (ACTR3, ARPC4, CAPZB, TOR3A, CYFIP2, CTTN, and NHLRC2), glycosaminoglycan metabolism (B3GNT1), receptor signaling (PDGFB and CD27), lipid raft formation (CLTCL1), calcium transport (ATP2A2 and ITPR3), and cholesterol metabolism (HMGCR) were analyzed further. For some of these pathways, known chemical inhibitors could replicate the Salmonella resistance phenotype, indicating their potential as targets for host-directed therapy. The screen indicated a role for the relatively uncharacterized gene NHLRC2 in both Salmonella invasion and macrophage differentiation. Upon differentiation, NHLRC2 mutant macrophages were hyperinflammatory and did not exhibit characteristics typical of macrophages, including atypical morphology and inability to interact and phagocytose bacteria/particles. Immunoprecipitation confirmed an interaction of NHLRC2 with FRYL, EIF2AK2, and KLHL13.IMPORTANCESalmonella exploits macrophages to gain access to the lymphatic system and bloodstream to lead to local and potentially systemic infections. With an increasing number of antibiotic-resistant isolates identified in humans, Salmonella infections have become major threats to public health. Therefore, there is an urgent need to identify alternative approaches to anti-infective therapy, including host-directed therapies. In this study, we used a simple genome-wide screen to identify 183 candidate host factors in macrophages that can confer resistance to Salmonella infection. These factors may be potential therapeutic targets against Salmonella infections

    JAK2 V617F hematopoietic clones are present several years prior to MPN diagnosis and follow different expansion kinetics.

    Get PDF
    TO THE EDITOR: The JAK2 V617F mutation is the most common somatic mutation in the classical myeloproliferative neoplasms (MPNs), present in >95% of cases of polycythemia vera (PV) and ∼50% of essential thrombocythemia (ET) and myelofibrosis (MF).1⇓⇓-4 It is usually the sole identifiable driver mutation in MPNs5 and was recently also identified as a driver of age-related clonal hemopoiesis in healthy individuals.6⇓⇓-9 In order to investigate the preclinical clonal evolution of MPNs, we identified 12 individuals with a JAK2 V617F mutant MPN, who 4.6 to 15.2 years previously (median 10.2 years) had also donated blood to register with the Cyprus Bone Marrow Donor Registry at the Karaiskakio FoundationThis work was supported by the Wellcome Trust Sanger Institute (WT098051). T. McKerrell is funded by a Wellcome Trust Clinician Scientist Fellowship (100678/Z/12/Z). G.S.V. is funded by a Wellcome Trust Senior Fellowship in Clinical Science (WT095663MA), and work in his laboratory is also funded by Cancer Research UK, Bloodwise, the Kay Kendall Leukaemia Fund, and Celgene. I.V. is supported by the Spanish Ministerio de Economía y Competitividad, Programa Ramón y Cajal

    Genetic perturbation of PU.1 binding and chromatin looping at neutrophil enhancers associates with autoimmune disease.

    Get PDF
    Neutrophils play fundamental roles in innate immune response, shape adaptive immunity, and are a potentially causal cell type underpinning genetic associations with immune system traits and diseases. Here, we profile the binding of myeloid master regulator PU.1 in primary neutrophils across nearly a hundred volunteers. We show that variants associated with differential PU.1 binding underlie genetically-driven differences in cell count and susceptibility to autoimmune and inflammatory diseases. We integrate these results with other multi-individual genomic readouts, revealing coordinated effects of PU.1 binding variants on the local chromatin state, enhancer-promoter contacts and downstream gene expression, and providing a functional interpretation for 27 genes underlying immune traits. Collectively, these results demonstrate the functional role of PU.1 and its target enhancers in neutrophil transcriptional control and immune disease susceptibility

    Development and validation of a comprehensive genomic diagnostic tool for myeloid malignancies.

    Get PDF
    The diagnosis of hematologic malignancies relies on multidisciplinary workflows involving morphology, flow cytometry, cytogenetic, and molecular genetic analyses. Advances in cancer genomics have identified numerous recurrent mutations with clear prognostic and/or therapeutic significance to different cancers. In myeloid malignancies, there is a clinical imperative to test for such mutations in mainstream diagnosis; however, progress toward this has been slow and piecemeal. Here we describe Karyogene, an integrated targeted resequencing/analytical platform that detects nucleotide substitutions, insertions/deletions, chromosomal translocations, copy number abnormalities, and zygosity changes in a single assay. We validate the approach against 62 acute myeloid leukemia, 50 myelodysplastic syndrome, and 40 blood DNA samples from individuals without evidence of clonal blood disorders. We demonstrate robust detection of sequence changes in 49 genes, including difficult-to-detect mutations such as FLT3 internal-tandem and mixed-lineage leukemia (MLL) partial-tandem duplications, and clinically significant chromosomal rearrangements including MLL translocations to known and unknown partners, identifying the novel fusion gene MLL-DIAPH2 in the process. Additionally, we identify most significant chromosomal gains and losses, and several copy neutral loss-of-heterozygosity mutations at a genome-wide level, including previously unreported changes such as homozygosity for DNMT3A R882 mutations. Karyogene represents a dependable genomic diagnosis platform for translational research and for the clinical management of myeloid malignancies, which can be readily adapted for use in other cancers

    Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis.

    Get PDF
    Clonal hemopoiesis driven by leukemia-associated gene mutations can occur without evidence of a blood disorder. To investigate this phenomenon, we interrogated 15 mutation hot spots in blood DNA from 4,219 individuals using ultra-deep sequencing. Using only the hot spots studied, we identified clonal hemopoiesis in 0.8% of individuals under 60, rising to 19.5% of those ≥90 years, thus predicting that clonal hemopoiesis is much more prevalent than previously realized. DNMT3A-R882 mutations were most common and, although their prevalence increased with age, were found in individuals as young as 25 years. By contrast, mutations affecting spliceosome genes SF3B1 and SRSF2, closely associated with the myelodysplastic syndromes, were identified only in those aged >70 years, with several individuals harboring more than one such mutation. This indicates that spliceosome gene mutations drive clonal expansion under selection pressures particular to the aging hemopoietic system and explains the high incidence of clonal disorders associated with these mutations in advanced old age
    corecore