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SUMMARY

Clonal hemopoiesis driven by leukemia-associated
genemutations can occurwithout evidence of a blood
disorder. To investigate this phenomenon, we interro-
gated 15 mutation hot spots in blood DNA from 4,219
individuals using ultra-deep sequencing. Using only
the hot spots studied, we identified clonal hemopoie-
sis in 0.8% of individuals under 60, rising to 19.5% of
thoseR90 years, thus predicting that clonal hemopoi-
esis is much more prevalent than previously realized.
DNMT3A-R882 mutations were most common and,
although their prevalence increased with age, were
found in individuals as young as 25 years. By contrast,
mutations affecting spliceosome genes SF3B1 and
SRSF2, closely associated with the myelodysplastic
syndromes, were identified only in those aged >70
years, with several individuals harboring more than
one such mutation. This indicates that spliceosome
genemutationsdriveclonal expansionunderselection
pressures particular to the aging hemopoietic system
and explains the high incidence of clonal disorders
associated with thesemutations in advanced old age.

INTRODUCTION

Cancers develop through the combined action of multiple muta-

tions that are acquired over time (Nowell, 1976). This paradigm is
Ce
well established in hematological malignancies, whose clonal

history can be traced back for several years or even decades

(Ford et al., 1998; Kyle et al., 2002). It is also clear from studies

of paired diagnostic-relapsed leukemia samples that recurrent

disease can harbor some, but not always all, mutations present

at diagnosis, providing evidence for the presence of a clone of

ancestral pre-leukemic stem cells that escape therapy and

give rise to relapse through the acquisition of new mutations

(Ding et al., 2012; Krönke et al., 2013). Studies of such phenom-

ena have defined a hierarchical structure among particular leu-

kemia mutations, with some, such as those affecting the gene

DNMT3A, displaying the characteristics of leukemia-initiating le-

sions and driving the expansion of hemopoietic cell clones prior

to the onset of leukemia (Ding et al., 2012; Shlush et al., 2014).

These observations suggest that individuals without overt fea-

tures of a hematological disorder may harbor hemopoietic cell

clones carrying leukemia-associated mutations. In fact, such

mutations, ranging from large chromosomal changes (Jacobs

et al., 2012; Laurie et al., 2012) to nucleotide substitutions (Bus-

que et al., 2012), have been found to drive clonal hemopoiesis in

some individuals. Recent reanalyses of large exome-sequencing

data sets of blood DNA showed that clonal hemopoiesis is more

common than previously realized and increases with age to

affect up to 11% of those over 80 and 18.4% of those over

90 years (Genovese et al., 2014; Jaiswal et al., 2014; Xie et al.,

2014). The presence of such clones was associated with an

increased risk of developing hematological or other cancers

and a higher all-cause mortality, probably due to an increased

risk of cardiovascular disease (Genovese et al., 2014; Jaiswal

et al., 2014).
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Table 1. Mutation Hot Spots Interrogated in This Study

Gene Target Codon

DNMT3A R882

JAK2 V617

NPM1 L287

SRSF2 P95

SF3B1 K666

SF3B1 K700

IDH1 R132

IDH2 R140

IDH2 R172

KRAS G12

NRAS G12

NRAS Q61

KIT D816

FLT3 D835

FLT3 N676

Also see Table S1 for detailed information about numbers of samples

screened for each mutation.
The important findings of these studies were based on anal-

ysis of exome-sequencing data sets that were generated for

the study of constitutional genomes, thus trading genome-

wide coverage for reduced sensitivity for detecting small subclo-

nal events. We used the different approach of targeted re-

sequencing of selected leukemia-associated mutation hot spots

in blood DNA from more than 4,000 individuals unselected for

blood disorders. In addition to increasing the sensitivity for de-

tecting subclonal mutations, this approach enabled us to pro-

spectively select and study a large number of elderly individuals.

Our results show that clonal hemopoiesis is significantly more

common than anticipated, give new insights into the distinct

age-distribution and biological behavior of clonal hemopoiesis

driven by different mutations, and help explain the increased

incidence of myelodysplastic syndromes (MDSs) with advancing

age.

RESULTS

To investigate the incidence, target genes, and age distribution

of age-related clonal hemopoiesis (ARCH), we performed tar-

geted re-sequencing for hot spotmutations at 15 gene loci recur-

rently mutated in myeloid malignancies (Table 1) using blood

DNA from 3,067 blood donors aged 17–70 (Wellcome Trust

Case Control Consortium [WTCCC]) and 1,152 unselected

individuals aged 60–98 years (United Kingdom Household

Longitudinal Study [UKHLS]; see Figure S1 for detailed age dis-

tributions). To do this, we developed and validated a robust

methodology, employing barcoded multiplex PCR of mutational

hot spots followed by next-generation sequencing (MiSeq) and

bioinformatic analysis, to extract read counts and allelic fractions

for reference and non-reference nucleotides. This reliably de-

tected mutation-associated circulating blood cell clones with a

variant allele fraction (VAF) R 0.008 (0.8%; see Supplemental

Experimental Procedures and Figure S2).
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We obtained adequate coverage (R1,000 reads at all studied

hot spots) from 4,067 blood DNA samples and identified muta-

tion-bearing clones in 105 of these. Of note, not all hot spots

were studied in all samples and the derived incidence of muta-

tions in our population as a whole was 3.24% (Table S1). How-

ever, the incidence rose significantly with age from 0.2% in the

17–29 to 19.5% in the 90–98 years age group (Figure 1A). We

found one or more samples with mutations at 9 of the 15 hot

spot codons studied, with VAFs varying widely within and be-

tween mutation groups (Table 2).

The most-common mutations were those affecting DNMT3A

R882, whose incidence rose with age from 0.2% (1/489) in the

17–25 to a peak of 3.1% (11/355) in the 80–89 age group. A

similar pattern was observed with JAK2 V617F mutations (Fig-

ure 1A). By contrast, spliceosome gene mutations at SRSF2

P95, SF3B1 K666, and SF3B1 K700 were exclusively observed

in people aged over 70 years, rising sharply from 1.8% in those

aged 70–79 to 8.3% in the 90–98 years age group. Among all

samples, we identified only six individuals with more than one

mutation; significantly, five of them had two independent spli-

ceosome gene mutations of different VAFs (Figure 1B). Unfortu-

nately, in each of three cases with two mutations at the same or

nearby positions, neighboring SNPs were not informative and

the variants could not be phased (see Supplemental Experi-

mental Procedures).Occasional mutations in the genes IDH1,

IDH2, NRAS, and KRAS were also seen. Except for three sam-

ples with IDH1/2 mutations, hemoglobin concentrations did not

differ significantly between individuals with and without hot

spot mutations (Figure S3A). For samples with full blood count

results available, JAK2 V617Fmutant cases had a higher platelet

count (albeit within the normal range) than ‘‘no mutation cases,’’

whereas other results did not differ (Figure S3B). No hot spot mu-

tations were found in the few cord blood (n = 18) and post-trans-

plantation (n = 32) samples studied.

Finally, despite using a very sensitive method and a mutation-

calling script written specifically for this purpose, no samples

with NPM1 mutations of VAF R 0.008 were identified. In fact,

variant reads reporting a canonical NPM1 mutation (mutation A;

TCTG duplication) were detected in only 1 of 4,067 samples at a

VAF of 0.0012 (4/3,466 reads).

DISCUSSION

Hematological malignancies develop through the serial acquisi-

tion of somatic mutations in a process that can take many years

or even decades (Ford et al., 1998; Kyle et al., 2002). Also, it is

clear that the presence of hemopoietic cells carrying leukemia-

associatedmutations is only followed by the onset of hematolog-

ical malignancies in a minority of cases (Busque et al., 2012;

Genovese et al., 2014; Jacobs et al., 2012; Jaiswal et al., 2014;

Laurie et al., 2012; Xie et al., 2014). In order to understand the

incidence and clonal dynamics of pre-leukemic clonal hemopoi-

esis, we interrogated 15 leukemia-associatedmutation hot spots

using a highly sensitive methodology able to detect small clones

with mutations.

We show that clonal hemopoiesis is rare in the young but be-

comes common with advancing age. In particular, we observed

that ARCH driven by the mutations studied here doubled in



Figure 1. Prevalence and Age Distribution

of Hot Spot Mutations Driving Clonal Hemo-

poiesis

(A) Prevalence of mutations driving clonal hemo-

poiesis by age.

(B) Samples with more than one mutation, variant

allele fraction (VAF) of each mutation present, and

age of participant.

Also see Figure S1 for age distribution of all

participants.
frequency in successive decades after the age of 50, rising from

1.5% in those aged 50–59 to 19.5% in those aged 90–98 (Fig-

ure 1). Of note, 61 of 112 clones identified had a VAF % 3%

(Table 2), and it is likely that most of these would not have

been detected by conventional exome sequencing, which gives

lower than 10-fold average coverage compared to the current

study (see Table S2 for comparison to such studies), with

some recurrently mutated regions giving particularly low cover-

age (Genovese et al., 2014). Notably, our study did not search

for non-hot-spot mutations associated with ARCH such as those

affecting genes TET2 and ASXL1 or DNMT3A codons other than

R882 (Genovese et al., 2014; Jaiswal et al., 2014; Xie et al., 2014).

Assuming that the incidence of small clones is similar for such

mutations as for the hot spot mutations we studied here, the

mean projected true incidence of ARCH driven by leukemia-

associated mutations in those older than 90 years is greater

than 70% (Figure S4). This makes clonal hemopoiesis an almost

inevitable consequence of advanced aging.

Another significant finding of our study is the disparate age

distribution of ARCH associated with different mutation types.

In particular, we found that, although DNMT3A R882 and JAK2

V617F mutations become more common with age, they were

also found in younger individuals. This is in keeping with the

increasing cumulative likelihood of their stochastic acquisition

with the passage of time. In contrast, spliceosome gene muta-

tions were found exclusively in those aged 70 years or older,

replicating the sharp rise beyond this age in the incidence of

MDSs driven by these mutations and the fact that, among unse-

lected MDS patients, those with spliceosome mutations are

significantly older than those without (Haferlach et al., 2014;

Lin et al., 2014; Papaemmanuil et al., 2013; Wu et al., 2012).
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Exome-sequencing studies describe a

much-lower rate of spliceosome muta-

tions (Genovese et al., 2014; Jaiswal

et al., 2014; Xie et al., 2014), but this is

again likely to reflect their lower sensitivity

for detecting small clones, which was a

particular limitation at spliceosomemuta-

tion hot spots as these were captured/

sequenced at lower-than-average depths

(Table S2). In our study, 19/33 SF3B1- or

SRSF2-associated clones had a VAF %

5%, with 13 of these at VAFs % 3% (Ta-

ble 2), the majority of which would not

have been detected by low-coverage

sequencing. The identification of ARCH
driven by spliceosome gene mutations is in keeping with the

fact that these are founding mutations in the clonal evolution of

MDS and related hematological malignancies (Cazzola et al.,

2013; Haferlach et al., 2014; Papaemmanuil et al., 2013).

We propose that the exclusive identification of spliceosome

gene mutations in those aged R70 years can be explained by

differences in the prevailing pressures on clonal selection at

different ages, which can in turn explain how different gene mu-

tations can generate detectable clonal expansions at different

ages (Figure 2). The alternatives are that spliceosome mutations

are associated with slower rates of clonal expansion or that they

are detected later because they contribute less to circulating leu-

kocytes. Both of these scenarios are less plausible, given the

complete absence of such mutations even at low VAFs in

younger age groups. For any somaticmutation imparting a clonal

advantage to a stem/progenitor cell and leading to the genera-

tion of a steadily expanding clone, one would expect such a

clone to be detectable at a smaller size at earlier and a larger

size at later time points, as is the case for DNMT3A R882 and

JAK2 V617 mutations. Instead, clones (of any size) driven by

mutant SRSF2 and SF3B1 were observed exclusively in individ-

uals aged 70 years or older, suggesting that these only begin to

expand later in life. Furthermore, considerable support for the

presence of a different selection milieu comes from the observa-

tion that five of six patients with multiple mutations harbored two

independent spliceosome gene mutations, indicative of conver-

gent evolution, i.e., evolution to overcome a shared selective

pressure or to exploit a shared environment (Greaves andMaley,

2012; Rossi et al., 2008).

It is tempting to consider the nature of age-related changes in

normal hemopoiesis that make it permissive to the outgrowth of
5, March 3, 2015 ª2015 The Authors 1241



Table 2. Amino Acid Consequences and VAFs of the 112 Clonal Mutations Identified in This Study

Mutation

Hot Spot Codon VAF (%) Age

Mutation

Hot Spot Codon VAF (%) Age

Mutation

Hot Spot Codon VAF (%) Age

DNMT3A R882 p.R882H 4.14 25 p.R882H 32.02 81 IDH1 R132 p.R132H 42.13 84

p.R882C 2.33 35 p.R882H 1.14 81 p.R132C 0.92 92

p.R882H 3.80 42 p.R882H 3.06 81 IDH2 R140 p.R140Q 6.67 76

p.R882H 4.00 42 p.R882H 2.17 81 SRSF2 P95 p.P95R 4.46 70

p.R882H 1.25 43 p.R882H 1.13 82 p.P95L 3.35 72

p.R882H 19.00 48 p.R882H 1.46 82 p.P95H 0.86 73

p.R882H 1.18 49 p.R882C 2.62 82 p.P95H 0.84 77

p.R882S 1.74 49 p.R882C 6.15 89 p.P95L 0.97 79y
p.R882H 9.87 50 p.R882C 2.00 94 p.P95L 0.85 80yy
p.R882H 0.83 51 JAK2V617F p.V617F 1.56 34 p.P95H 6.67 80yy
p.R882C 1.10 51 p.V617F 4.91 42 p.P95L 0.96 81

p.R882C 12.50 52 p.V617F 7.72 45 p.P95H 6.40 82

p.R882C 1.28 53 p.V617F 0.85 62 p.P95L 2.74 85

p.R882C 2.47 54 p.V617F 25.44 64 p.P95R 7.52 87

p.R882H 1.95 55 p.V617F 7.41 65 p.P95L 5.84 88**

p.R882C 30.22 55 p.V617F 1.03 67 p.P95H 10.48 88**

p.R882C 1.22 56 p.V617F 0.88 71 p.P95R 2.71 88

p.R882H 0.91 58 p.V617F 3.75 71 p.P95R 17.05 90z
p.R882H 4.17 60 p.V617F 1.16 75 SF3B1 K700 p.K700E 1.04 76

p.R882H 5.90 60 p.V617F 2.30 77 p.K700E 6.63 81

p.R882H 9.60 60 p.V617F 1.92 78 p.K700E 0.79 82

p.R882H 2.73 60 p.V617F 2.26 80* p.K700E 12.59 83

p.R882C 9.33 60 p.V617F 4.25 80 p.K700E 8.77 83zz
p.R882H 7.03 61 p.V617F 1.92 80 p.K700E 1.02 84

p.R882C 1.21 61 p.V617F 3.71 80 p.K700E 0.85 90z
p.R882H 0.86 63 p.V617F 15.48 81 p.K700E 1.37 90

p.R882H 2.54 64 p.V617F 1.21 82 SF3B1 K666 p.K666N 1.33 70

p.R882H 3.19 67 p.V617F 1.62 85 p.K666N 5.01 79

p.R882H 2.74 70 p.V617F 0.83 85 p.K666N 13.36 79y
p.R882H 4.27 74 p.V617F 1.98 86 p.K666N 15.43 80*

p.R882H 0.85 74 p.V617F 25.94 88 p.K666N 4.60 81

p.R882H 0.85 75 p.V617F 10.88 88** p.K666E 1.09 83zz
p.R882C 1.12 77 p.V617F 2.94 90 p.K666N 35.11 86

p.R882C 1.15 78 p.V617F 1.23 90 p.K666N 19.70 86

p.R882H 1.26 79 KRAS G12 p.G12 R 0.94 55 p.K666N 16.55 86

p.R882H 16.66 80 p.G12S 2.78 78 p.K666E 3.34 95

p.R882C 4.28 80 NRAS G12 p.G12S 1.50 61

p.R882C 3.66 80 p.G12D 0.96 62

Mutations identified in the same sample are highlighted with the same symbol (*, **, y, yy, z, and zz).
clones driven by spliceosomemutations. HSCs do not operate in

isolation; instead, their normal survival and behavior are closely

dependent on interactions with the hemopoietic microenviron-

ment (Calvi et al., 2003; Rossi et al., 2008; Zhang et al., 2003).

Therefore, both cell-intrinsic and microenvironmental factors in-

fluence hemopoietic aging (Rossi et al., 2008; Woolthuis et al.,

2011). For example, there is good evidence for age-related

changes in cell-intrinsic properties of HSCs in both mice (Cham-
1242 Cell Reports 10, 1239–1245, March 3, 2015 ª2015 The Authors
bers et al., 2007; Rossi et al., 2005) and humans (Rübe et al.,

2011; Taraldsrud et al., 2009), and it is also clear that aging

has a profound effect on the hemopoietic niche, reducing its

ability to sustain polyclonal hemopoiesis, favoring oligo- or

monoclonality instead (Vas et al., 2012). These and many other

observations provide strong evidence that changes in the hemo-

poietic system subject HSCs to changing pressures during

normal aging, driving clonal selection (Rossi et al., 2008).



Figure 2. Proposed Kinetics of Hemopoietic Clones Driven by

Different Gene Mutations
Mutations such as DNMT3A R882H/C or JAK2 V617F drive a slow but inex-

orable clonal expansion, leading to the outgrowth of a detectable clone after a

certain latency. By contrast, mutations affecting spliceosome genes, such as

SF3B1 and SRSF2, and acquired at the same age for the purposes of this

model give no proliferative advantage initially but do so later in the context of

an aging hemopoietic compartment. Their effects may operate by prolonging

stem cell survival and repopulating fitness beyond that of normal stem cells or

by exploiting cell-extrinsic changes in the aging microenvironment.
A striking example of such selection was described in a 115-

year-old woman whose peripheral white blood cells were shown

to be primarily the offspring of only two related HSC clones,

whose cargo of approximately 450 somatic mutations did not

include known leukemogenic mutations (Holstege et al., 2014).

In the absence of somatic driver mutations, it is probable that

such selection is driven by well-demonstrated epigenetic differ-

ences between individual HSCs (Fraga et al., 2005) or by sto-

chastic events. Furthermore, clonal hemopoiesis in the absence

of a known leukemia-driver mutation was also well documented

recently (Genovese et al., 2014), and whereas unknown or unde-

tected drivers may be responsible for many cases of this phe-

nomenon, it is also highly plausible that a stochastic process

of clonal selection or loss may operate in others. Our study pro-

vides evidence that spliceosome gene mutations offer a means

to exploit age-related changes in hemopoiesis to drive clonal he-

mopoiesis in advanced old age, an observation that blurs the

boundary between ‘‘driver’’ and ‘‘passenger’’ mutations. Such

a context dependency is not a surprising attribute for the effects

of spliceosomemutations, which have not, so far, been shown to

impart a primary proliferative advantage to normal hemopoietic

stem and progenitor cells (Matsunawa et al., 2014; Visconte

et al., 2012).

A final important finding of our study was the almost complete

absence of canonical NPM1 mutations in our collection of more

than 4,000 people, despite the use of a highly sensitive assay for

their detection, designed specifically for this study. Among more

than 10 million mapped reads covering this mutation hot spot,

we identified only four reads in a single sample reporting a ca-

nonical mutation (mutation A; TCTG duplication). Given their fre-

quency in myeloid leukemia (Cancer Genome Atlas Research

Network, 2013) and the fact that they are not late mutations

(Krönke et al., 2013; Shlush et al., 2014), this observation frames

NPM1mutations as ‘‘gatekeepers’’ of leukemogenesis, i.e., their
Ce
acquisition appears to be closely associated with the develop-

ment of frank leukemia. In this light, the frequent co-occurrence

of DNMT3A and NPM1 mutations suggests that the former

behave as ‘‘rafts’’ that enable NPM1 mutant clones to be

founded and expanded, thus facilitating onward evolution to-

ward acute myeloid leukemia.

We used a highly sensitive method to search for evidence of

clonal hemopoiesis driven by 15 recurrent leukemogenic muta-

tions in more than 4,000 individuals. Our results demonstrate

that the incidence of clonal hemopoiesis is much higher than

suggested by exome-sequencing studies, that spliceosome

gene mutations drive clonal outgrowth primarily in the context

of an aging hemopoietic compartment, and that NPM1 muta-

tions do not drive ARCH, indicating that their acquisition is

closely associated with frank leukemia.

EXPERIMENTAL PROCEDURES

Patient Samples

Samples were obtained with written informed consent and in accordance with

the Declaration of Helsinki and appropriate ethics committee approvals from

all participants (approval reference numbers 10/H0604/02, 07/MRE05/44,

and 05/Q0106/74). Maternal consent was obtained for the use of cord blood

samples. Samples were obtained from 3,067 blood donors aged 17–70 years

(WTCCC; UK Blood Services 1 [UKBS1] and UKBS2 common controls),

1,152 unselected individuals aged 60–98 years (UKHLS; https://www.

understandingsociety.ac.uk/), 32 patients that had undergone a hemopoietic

stem cell transplant (12 autologous and 20 allogeneic; Tables S3 and S4)

1 month to 14 years previously, and 18 cord blood samples. Age distribution

of the WTCCC and UKHLS cohorts/samples is shown in Figure S1. Hemoglo-

bin concentrations were available for a total of 3,587 of the 4,067 samples from

which adequate sequencing data were obtained for analysis, including 102 of

105 samples with mutations. Full blood count results were available for 2,952

WTCCC samples. The average blood donation frequency for WTCCC donors

was 1.6 donations of one unit per year. Details of donations by individual par-

ticipants were not available.

Targeted Sequencing

Genomic DNA was used to simultaneously amplify several gene loci using

multiplex PCR, in order to capture and analyze 15 mutational hot spots en-

riched for, but not exclusive to, targets of mutations thought to arise early in

leukemogenesis (Table 1). We used three multiplex primer combinations

(Plex1-3), guided by our findings, to capture the targeted mutational hot spots

(Table S1). Primers were designed using the Hi-Plex PCR-MPS (massively

parallel sequencing) strategy (Nguyen-Dumont et al., 2013), except for JAK2

V617 and ‘‘Plex2’’ primers, which were designed using MPRIMER (Shen

et al., 2010). These and additional primer sequences used in each Plex and de-

tails of PCR- and DNA-sequencing protocols are detailed in Supplemental

Experimental Procedures. Methodological validation experiments are shown

in Figure S2.

Bioinformatic Analysis

Sequencing data were aligned to the human reference genome (hg19) using

BWA. Subsequently, the SAMTOOLS pileup command was used to generate

pileup files from the generated bam files (version 0.1.8; http://samtools.

sourceforge.net; Li et al., 2009). A flexible in-house Perl script generated by

our group, MIDAS (Conte et al., 2013), was modified in order to interrogate

only the hot spot nucleotide positions of interest (those with reported muta-

tions in the COSMIC database; Forbes et al., 2015) on the pileup file, consid-

ering only those reads with a sequence quality higher than 25 and a mapping

quality higher than 15. For each sample, the numbers of reads reporting the

reference and variant alleles at each position were extracted. VAFs were

derived by dividing the number of reads reporting the most-frequent variant

nucleotide to the total. In order to detect NPM1mutations with high sensitivity,
ll Reports 10, 1239–1245, March 3, 2015 ª2015 The Authors 1243
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we wrote a bespoke Perl script described in Supplemental Experimental

Procedures.

Statistical Analyses and Mutation-Calling Threshold

We chose a threshold VAF of R0.008 (0.8%) to ‘‘call’’ clones with a heterozy-

gous mutation representing R1.6% of blood leukocytes. From validation ex-

periments and data analysis (see Supplemental Experimental Procedures

and Figure S2D), we determined that the maximum false-positive error rate

for calling a mutation (VAFR 0.008) due to variant allele counts that are solely

due to PCR-MiSeq error was negligible (p < 10�5). For comparisons of blood

cell counts and hemoglobin concentrations, we used non-paired t tests. For

summary statistics of read coverage (Table S2) and for the purposes of deriving

an estimate of the overall incidence of clonal hemopoiesis (Figure S4), we used

published tables of all mutations reported by three recent studies that em-

ployed whole-exome-sequencing analyses to identify individuals with clonal

hemopoiesis (Genovese et al., 2014; Jaiswal et al., 2014; Xie et al., 2014).

ACCESSION NUMBERS

The European Genome-Phenome Archive (EGA) accession number for the

sequencing data reported in this paper is EGAS00001000814.
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Supplemental Information includes Supplemental Experimental Procedures,

four figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2015.02.005.
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