342 research outputs found
Electronic spin-triplet nematic with a twist
We analyze a model of itinerant electrons interacting through a quadrupole
density-density repulsion in three dimensions. At the mean field level, the
interaction drives a continuous Pomeranchuk instability towards -wave,
spin-triplet nematic order, which simultaneously breaks the SU(2) spin-rotation
and spatial rotational symmetries. This order results in spin antisymmetric,
elliptical deformations of the Fermi surfaces of up and down spins. We show
that the effects of quantum fluctuations are similar to those in metallic
ferromagnets, rendering the nematic transition first-order at low temperatures.
Using the fermionic quantum order-by-disorder approach to self-consistently
calculate fluctuations around possible modulated states, we show that the
first-order transition is pre-empted by the formation of a nematic state that
is intertwined with a helical modulation in spin space. Such a state is closely
related to -wave bond density wave order in square-lattice systems.
Moreover, we show that it may coexist with a modulated, -wave
superconducting state.Comment: 15 pages, 9 figure
Measurement of the reaction \gamma p \TO K^ + \Lambda(1520) at photon energies up to 2.65 GeV
The reaction \gamma p \TO K^+\Lambda(1520) was measured in the energy range
from threshold to 2.65 GeV with the SAPHIR detector at the electron stretcher
facility ELSA in Bonn. The production cross section was
analyzed in the decay modes , , , and
as a function of the photon energy and the squared
four-momentum transfer . While the cross sections for the inclusive
reactions rise steadily with energy, the cross section of the process \gamma p
\TO K^+\Lambda(1520) peaks at a photon energy of about 2.0 GeV, falls off
exponentially with , and shows a slope flattening with increasing photon
energy. The angular distributions in the -channel helicity system indicate
neither a nor a exchange dominance. The interpretation of the
as a molecule is not supported.Comment: 11 pages, 16 figures, 4 table
Photoelectrochemical Conditioning of MOVPE p-InP Films for Light-Induced Hydrogen Evolution: Chemical, Electronic and Optical Properties
Homoepitaxial p-InP(100) thin films prepared by MOVPE (metallorganic vapor phase epitaxy) were transformed into an InP/oxide-phosphate/Rh heterostructure by photoelectrochemical conditioning. Surface sensitive synchrotron radiation photoelectron spectroscopy indicates the formation of a mixed oxide constituted by In(PO_3)_3, InPO_4 and In_(2)O_3 as nominal components during photo-electrochemical activation. The operation of these films as hydrogen evolving photocathode proved a light-to-chemical energy conversion efficiency of 14.5%. Surface activation arises from a shift of the semiconductor electron affinity by 0.44 eV by formation of In-Cl interfacial dipoles with a density of about 10^(12) cm^(−2). Predominant local In2O3-like structures in the oxide introduce resonance states near the semiconductor conduction band edge imparting electron conductivity to the phosphate matrix. Surface reflectance investigations indicate an enhanced light-coupling in the layered architecture
Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency
Recent rapid progress in efficiencies for solar water splitting by
photoelectrochemical devices has enhanced its prospects to enable storable
renewable energy. Efficient solar fuel generators all use tandem photoelectrode
structures, and advanced integrated devices incorporate corrosion protection
layers as well as heterogeneous catalysts. Realization of near thermodynamic
limiting performance requires tailoring the energy band structure of the
photoelectrode and also the optical and electronic properties of the surface
layers exposed to the electrolyte. Here, we report a monolithic device
architecture that exhibits reduced surface reflectivity in conjunction with
metallic Rh nanoparticle catalyst layers that minimize parasitic light
absorption. Additionally, the anatase TiO2 protection layer on the photocathode
creates a favorable internal band alignment for hydrogen evolution. An initial
solar-to-hydrogen efficiency of 19.3 % is obtained in acidic electrolyte and an
efficiency of 18.5 % is achieved at neutral pH condition (under simulated
sunlight)
Measurement of gamma p --> K+ Lambda and gamma p --> K+ Sigma0 at photon energies up to 2.6 GeV
The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured
in the energy range from threshold up to a photon energy of 2.6 GeV. The data
were taken with the SAPHIR detector at the electron stretcher facility, ELSA.
Results on cross sections and hyperon polarizations are presented as a function
of kaon production angle and photon energy. The total cross section for Lambda
production rises steeply with energy close to threshold, whereas the Sigma0
cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross
sections together with their angular decompositions into Legendre polynomials
suggest contributions from resonance production for both reactions. In general,
the induced polarization of Lambda has negative values in the kaon forward
direction and positive values in the backward direction. The magnitude varies
with energy. The polarization of Sigma0 follows a similar angular and energy
dependence as that of Lambda, but with opposite sign.Comment: 21 pages, 25 figures, submitted to Eur. Phys. J.
The impact of non ideal surfaces on the solid water interaction a time resolved adsorption study
The initial interaction of water with semiconductors determines the electronic structure of the solid liquid interface. The exact nature of this interaction is, however, often unknown. Here, we study gallium phosphide based surfaces exposed to H2O by means of in situ reflection anisotropy spectroscopy. We show that the introduction of typical imperfections in the form of surface steps or trace contaminants not only changes the dynamics of the interaction, but also its qualitative nature. This emphasises the challenges for the comparability of experiments with idealised electronic structure models for electrochemistr
Evidence for the positive-strangeness pentaquark in photoproduction with the SAPHIR detector at ELSA
The positive--strangeness baryon resonance is observed in
photoproduction of the final state with the SAPHIR detector at
the Bonn ELectron Stretcher Accelerator ELSA. It is seen as a peak in the invariant mass distribution with a confidence level. We find
a mass MeV and an upper limit of the width
MeV at 90% c.l. From the absence of a signal in
the invariant mass distribution in at the
expected strength we conclude that the must be isoscalar.Comment: 9 pages, 4 figure
K0-Sigma+ Photoproduction with SAPHIR
Preliminary results of the analysis of the reaction p(gamma,K0)Sigma+ are
presented. We show the first measurement of the differential cross section and
much improved data for the total cross section than previous data. The data are
compared with model predictions from different isobar and quark models that
give a good description of p(gamma,K+)Lambda and p(gamma,K+)Sigma0 data in the
same energy range. Results of ChPT describe the data adequately at threshold
while isobar models that include hadronic form factors reproduce the data at
intermediate energies.Comment: 4 pages, Latex2e, 4 postscript figures. Talk given at the
International Conference on Hypernuclear and Strange Particle Physics
(HYP97), Brookhaven National Laboratory, USA, October 13-18, 1997. To be
published in Nucl. Phys. A. Revised version due to changes in experimental
dat
Resonant Lifetime of Core-Excited Organic Adsorbates from First Principles
We investigate by first-principles simulations the resonant electron-transfer
lifetime from the excited state of an organic adsorbate to a semiconductor
surface, namely isonicotinic acid on rutile TiO(110). The
molecule-substrate interaction is described using density functional theory,
while the effect of a truly semi-infinite substrate is taken into account by
Green's function techniques. Excitonic effects due to the presence of
core-excited atoms in the molecule are shown to be instrumental to understand
the electron-transfer times measured using the so-called core-hole-clock
technique. In particular, for the isonicotinic acid on TiO(110), we find
that the charge injection from the LUMO is quenched since this state lies
within the substrate band gap. We compute the resonant charge-transfer times
from LUMO+1 and LUMO+2, and systematically investigate the dependence of the
elastic lifetimes of these states on the alignment among adsorbate and
substrate states.Comment: 24 pages, 6 figures, to appear in Journal of Physical Chemistry
- …