27 research outputs found

    Characterization of Vertical Accelerations Experienced by Older People Attending an Aerobics Class Designed to Produce High Impacts

    Get PDF
    The purpose of this study was to establish the feasibility of using an aerobics class to produce potentially bone protective vertical impacts of ≥ 4g in older adults and to determine whether impacts can be predicted by physical function. Participants recruited from older adult exercise classes completed an SF-12 questionnaire, short physical performance battery, and an aerobics class with seven different components, performed at low and high intensity. Maximum g and jerk values were identified for each activity. Forty-one participants (mean 69 years) were included. Mean maximal values approached or exceeded the 4g threshold for four of the seven exercises. In multivariate analyses, age (–0.53; –0.77, –0.28) (standardized beta coefficient; 95% CI) and 4-m walk time (–0.39; –0.63, –0.16) were inversely related to maximum g. Aerobics classes can be used to produce relatively high vertical accelerations in older individuals, although the outcome is strongly dependent on age and physical function

    Sarcopenia Is Negatively Related to High Gravitational Impacts Achieved from Day-to-day Physical Activity

    Get PDF
    Abstract Background Sarcopenia has been associated with reduced physical activity (PA). We aimed to determine if sarcopenia, and specific components of muscle size, function, and physical performance, are associated with high impacts achieved during habitual PA, as these are related to bone strength in community-dwelling older women. Methods Participants were older women from the Cohort of Skeletal Health in Bristol and Avon. We defined sarcopenia using the EWGSOP criteria. Lower limb peak muscle power and force were assessed using Jumping Mechanography (JM). High vertical impacts were assessed by tri-axial accelerometry (at least 1.5g above gravity). Cross-sectional associations were analyzed by linear regression, adjusting for age, height and weight (or fat mass for models including appendicular lean mass index), comorbidities, smoking, alcohol, and Index of Multiple Deprivation. Results Our analyses included 380 participants, with mean age 76.7 (SD 3.0) years; 242 (64%) also completed JM. In age-adjusted analysis, a negative relationship was observed between severity of sarcopenia and high, but not medium or low, impacts (p = .03 for trend). Regarding components of sarcopenia underlying this relationship, multivariable analyses revealed that gait speed (β 1.47 [95% CI 1.14, 1.89], [β-1] reflects the proportionate increase in high impacts per SD increase in exposure) and peak force (1.40 [1.07, 1.84]) were independently associated with high impacts. Conclusions Older women with sarcopenia experienced fewer bone-strengthening high impacts than those with presarcopenia or without sarcopenia. To increase bone strengthening activity in older women, interventions need to improve both lower limb muscle force and walking speed. </jats:sec

    Comparison of muscle function, bone mineral density and body composition of early starting and later starting older Masters athletes

    Get PDF
    Masters endurance runners can epitomize healthy aging; being reflective of the physiological processes of aging without the compounded effects of inactivity. The primary aim of the present study was to determine, using cross-sectional data, whether individuals taking up training after the age of 50 years can achieve the same level of athletic performance and musculoskeletal characteristics in their older age as those who trained all of their adult lives. A total of 150 master endurance runners [age 68 (5) years; 111 male, 39 female] were divided into early starters (training all of their adulthood) and late starters (started training after age 50 years). A comparative non-athletic group of 59 healthy older adults [age 73 (4) years; 30 female, 29 male] were additionally included for analysis. Training intensity, age-graded performance (AGP) and musculoskeletal assessments were performed. Results showed that there was no difference between athlete groups for training intensity or age-graded performance, despite the 30-year difference in training history. Body fat percentage and leg lean mass did not differ between athlete groups, but were 17% lower and 12% greater, respectively, in athlete groups compared with controls. Power normalized to body mass did not differ between any groups. Spine BMD was lower in late starters than controls, while early starters did not differ from late starters or controls. Hip BMD did not differ between any of the groups. These findings show that the Masters athletes we studied that started intense endurance running after the age of 50 years had lower body fat and higher leg lean mass compared to non-athletes. Body composition and athletic performance of the late starters was very similar to those who trained all of their adult lives

    Day-to-day physical activity producing low gravitational impacts is associated with faster visual processing speed at age 69:cross-sectional study

    Get PDF
    Background Little is known about how different physical activity (PA) parameters relate to cognitive function in older adults. Using accelerometers calibrated to detect vertical impacts from ground reaction forces we examined the associations of low, medium and higher impact PA with processing speed, verbal memory and cognitive state in older adults. Methods Participants were 69-year old British men and women from the Medical Research Council National Survey of Health and Development included in a vertical impacts and bone sub-study (n = 558; 48.2% female). Counts of low (0.5 < g < 1.0 g), medium (1 < g < 1.5 g), or higher (≥1.5 g) magnitude impacts were derived from vertical acceleration peaks recorded over 7 days by hip-worn accelerometers. Processing speed was assessed by a timed visual letter search task, verbal memory by a 15-word list learning test and cognitive state by the Addenbrooke’s Cognitive Examination (ACE-III). Potential confounders were childhood cognitive ability, adult socioeconomic position, body mass index and depression. Results In initial sex-adjusted models, low magnitude impacts were associated with better performance in all three cognitive function tests; standard deviation differences in test scores per doubling in number of low impacts: letter search speed = 0.10 (95% confidence intervals (CI): 0.03 to 0.16), word learning test = 0.05 (95% CI: 0.00 to 0.11), ACE-III scale = 0.09 (95% CI: 0.03 to 0.14). After adjustment for confounders, differences persisted for letter search speed (0.09; 95% CI: 0.02 to 0.16) but were closer to the null for the word learning test (0.02; 95% CI: − 0.04 to 0.07) and ACE-III scores (0.04; 95% CI: − 0.01 to 0.09). Low impacts remained associated with letter search speed after sensitivity analyses excluding those with functional and musculoskeletal problems, and after adjustment for impacts in higher bands. Modest positive associations between higher magnitude impacts and cognitive test scores were most likely due to chance. Conclusion Accelerometer-derived low impact physical activity was associated with better visual processing speed in 69-year old men and women independently of childhood cognitive ability and other measured confounders. Day-to-day low impact physical activity may therefore have the potential to benefit cognitive health in older adults

    Physical Activity Producing Low, but Not Medium or Higher, Vertical Impacts Is Inversely Related to BMI in Older Adults: Findings from a Multicohort Study

    Get PDF
    © 2018 Oxford University Press. All rights reserved. Background: High impact physical activity (PA) is thought to improve skeletal health, but its relation to other health outcomes are unclear. We investigated associations between PA impact magnitude and body mass index (BMI) in older adults. Methods: Data were taken from the Cohort for Skeletal Health in Bristol and Avon (COSHIBA), Hertfordshire Cohort Study, and MRC National Survey of Health and Development. Vertical acceleration peaks from 7-day hip-worn accelerometer recordings were used to classify PA as low (0.5 < g < 1.0g), medium (1 < g < 1.5g), or higher (=1.5g) impact. Cohort-specific associations of low, medium, and higher impact PA with BMI were examined using linear regressions and estimates combined using random-effects meta-analysis. Results: A total of 1182 participants (mean age = 72.7 years, 68% female) were included. Low, medium, and higher impact PA were inversely related to BMI in initial models. After adjustment for confounders and other impacts, low, but not medium or higher, impacts were inversely related to BMI (-0.31, p < .001: overall combined standard deviation change in BMI per doubling in the number of low impacts). In adjusted analyses of body composition measured by dual-energy X-ray absorptiometry in COSHIBA, low, but not medium or higher, impacts were inversely related to total body fat mass (-0.19, p < .001) and android:gynoid fat mass ratio (-0.16, p = .01), whereas high impact PA was weakly and positively associated with lean mass (0.05, p = .06). Conclusions: Greater exposure to PA producing low magnitude vertical impacts was associated with lower BMI and fat mass at older age. Low impact PA may help reduce obesity risk in older adults

    Correlates of high-impact physical activity measured objectively in older British adults

    Get PDF
    © The Author(s) 2017. Background Exposure to higher magnitude vertical impacts is thought to benefit bone health. The correlates of this high-impact physical activity (PA) in later life are unknown. Methods Participants were from the Cohort for Skeletal Health in Bristol and Avon, Hertfordshire Cohort Study and MRC National Survey of Health and Development. Associations of demographic, behavioural, physiological and psychological factors with vertical acceleration peaks ≥1.5 g (i.e. high-impact PA) from 7-day hip-worn accelerometer recordings were examined using linear regression. Results A total of 1187 participants (mean age = 72.7 years, 66.6% females) were included. Age, sex, education, active transport, selfreported higher impact PA, walking speed and self-rated health were independently associated with high-impact PA whereas BMI and sleep quality showed borderline independent associations. For example, differences in log-high-impact counts were 0.50 (P < 0.001) for men versus women and -0.56 (P < 0.001) for worst versus best self-rated health. Our final model explained 23% of between-participant variance in high impacts. Other correlates were not associated with high-impact activity after adjustment. Conclusions Besides age and sex, several factors were associated with higher impact PA in later life. Our findings help identify characteristics of older people that might benefit from interventions designed to promote osteogenic PA
    corecore