114 research outputs found

    Relative role of border restrictions, case finding and contact tracing in controlling SARS-CoV-2 in the presence of undetected transmission.

    Get PDF
    BACKGROUND: Several countries have controlled the spread of COVID-19 through varying combinations of border restrictions, case finding, contact tracing and careful calibration on the resumption of domestic activities. However, evaluating the effectiveness of these measures based on observed cases alone is challenging as it does not reflect the transmission dynamics of missed infections. METHODS: Combining data on notified local COVID-19 cases with known and unknown sources of infections (i.e. linked and unlinked cases) in Singapore in 2020 with a transmission model, we reconstructed the incidence of missed infections and estimated the relative effectiveness of different types of outbreak control. We also examined implications for estimation of key real-time metrics — the reproduction number and ratio of unlinked to linked cases, using observed data only as compared to accounting for missed infections. FINDINGS: Prior to the partial lockdown in Singapore, initiated in April 2020, we estimated 89% (95%CI 75–99%) of the infections caused by notified cases were contact traced, but only 12.5% (95%CI 2–69%) of the infections caused by missed infectors were identified. We estimated that the reproduction number was 1.23 (95%CI 0.98–1.54) after accounting for missed infections but was 0.90 (95%CI 0.79-1.1) based on notified cases alone. At the height of the outbreak, the ratio of missed to notified infections was 34.1 (95%CI 26.0–46.6) but the ratio of unlinked to linked infections was 0.81 (95%CI 0.59–1.36). Our results suggest that when case finding and contact tracing identifies at least 50% and 20% of the infections caused by missed and notified cases respectively, the reproduction number could be reduced by more than 14%, rising to 20% when contact tracing is 80% effective. INTERPRETATION: Depending on the relative effectiveness of border restrictions, case finding and contact tracing, unobserved outbreak dynamics can vary greatly. Commonly used metrics to evaluate outbreak control — typically based on notified data — could therefore misrepresent the true underlying outbreak. FUNDING: Ministry of Health, Singapore. EVIDENCE BEFORE THIS STUDY: We searched PubMed, BioRxiv and MedRxiv for articles published in English up to Mar 20, 2021 using the terms: (2019-nCoV OR “novel coronavirus” OR COVID-19 OR SARS-CoV-2) AND (border OR travel OR restrict* OR import*) AND (“case finding” OR surveillance OR test*) AND (contact trac*) AND (model*). The majority of modelling studies evaluated the effectiveness of various combinations of interventions in the absence of outbreak data. For studies that reconstructed the initial spread of COVID-19 with outbreak data, they further simulated counterfactual scenarios in the presence or absence of these interventions to quantify the impact to the outbreak trajectory. None of the studies disentangled the effects of case finding, contact tracing, introduction of imported cases and the reproduction number, in order to reproduce an observed SARS-CoV-2 outbreak trajectory. ADDED VALUE OF THIS STUDY: Notified COVID-19 cases with unknown and known sources of infection are identified through case finding and contact tracing respectively. Their respective daily incidence and the growth rate over time may differ. By capitalising on these differences in the outbreak data and the use of a mathematical model, we could identify the key drivers behind the growth and decline of both notified and missed COVID-19 infections in different time periods — e.g. domestic transmission vs external introductions, relative role of case finding and contact tracing in domestic transmission. Estimating the incidence of missed cases also allows us to evaluate the usefulness of common surveillance metrics that rely on observed cases. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE: Comprehensive outbreak investigation data integrated with mathematical modelling helps to quantify the strengths and weaknesses of each outbreak control intervention during different stages of the pandemic. This would allow countries to better allocate limited resources to strengthen outbreak control. Furthermore, the data and modelling approach allows us to estimate the extent of missed infections in the absence of population wide seroprevalence surveys. This allows us to compare the growth dynamics of notified and missed infections as reliance on the observed data alone may create the illusion of a controlled outbreak

    Relative role of border restrictions, case finding and contact tracing in controlling SARS-CoV-2 in the presence of undetected transmission: a mathematical modelling study.

    Get PDF
    BACKGROUND: Understanding the overall effectiveness of non-pharmaceutical interventions to control the COVID-19 pandemic and reduce the burden of disease is crucial for future pandemic planning. However, quantifying the effectiveness of specific control measures and the extent of missed infections, in the absence of early large-scale serological surveys or random community testing, has remained challenging. METHODS: Combining data on notified local COVID-19 cases with known and unknown sources of infections in Singapore with a branching process model, we reconstructed the incidence of missed infections during the early phase of the wild-type SARS-CoV-2 and Delta variant transmission. We then estimated the relative effectiveness of border control measures, case finding and contact tracing when there was no or low vaccine coverage in the population. We compared the risk of ICU admission and death between the wild-type SARS-CoV-2 and the Delta variant in notified cases and all infections. RESULTS: We estimated strict border control measures were associated with 0.2 (95% credible intervals, CrI 0.04-0.8) missed imported infections per notified case between July and December 2020, a decline from around 1 missed imported infection per notified case in the early phases of the pandemic. Contact tracing was estimated to identify 78% (95% CrI 62-93%) of the secondary infections generated by notified cases before the partial lockdown in Apr 2020, but this declined to 63% (95% CrI 56-71%) during the lockdown and rebounded to 78% (95% CrI 58-94%) during reopening in Jul 2020. The contribution of contact tracing towards overall outbreak control also hinges on ability to find cases with unknown sources of infection: 42% (95% CrI 12-84%) of such cases were found prior to the lockdown; 10% (95% CrI 7-15%) during the lockdown; 47% (95% CrI 17-85%) during reopening, due to increased testing capacity and health-seeking behaviour. We estimated around 63% (95% CrI 49-78%) of the wild-type SARS-CoV-2 infections were undetected during 2020 and around 70% (95% CrI 49-91%) for the Delta variant in 2021. CONCLUSIONS: Combining models with case linkage data enables evaluation of the effectiveness of different components of outbreak control measures, and provides more reliable situational awareness when some cases are missed. Using such approaches for early identification of the weakest link in containment efforts could help policy makers to better redirect limited resources to strengthen outbreak control

    Productivity costs from a dengue episode in Asia: a systematic literature review

    Get PDF
    Background Dengue is a mosquito-borne viral infection which has been estimated to cause a global economic burden of US8.9billionperyear.40MethodWesearchedPubMedandWebofKnowledgewithoutdateandlanguagerestrictionsusingtermsrelatedtodengueandcostandeconomicsburden.ThetitlesandabstractsofpublicationsrelatedtoAsiawerescreenedtoidentifyrelevantstudies.Thereportedproductivitylossesandcostsofnonfatalandfataldengueepisodeswerethendescribedandcompared.Costswereadjustedforinflationto2017prices.ResultsWereviewed33relevantarticles,ofwhich20studiesreportedtheproductivitylosses,and31studiesreportedproductivitycosts.TheproductivitycostsvariedbetweenUS8.9 billion per year. 40% of this estimate was due to what are known as productivity costs (the costs associated with productivity loss from both paid and unpaid work that results from illness, treatment or premature death). Although productivity costs account for a significant proportion of the estimated economic burden of dengue, the methods used to calculate them are often very variable within health economic studies. The aim of this review was to systematically examine the current estimates of the productivity costs associated with dengue episodes in Asia and to increase awareness surrounding how productivity costs are estimated. Method We searched PubMed and Web of Knowledge without date and language restrictions using terms related to dengue and cost and economics burden. The titles and abstracts of publications related to Asia were screened to identify relevant studies. The reported productivity losses and costs of non-fatal and fatal dengue episodes were then described and compared. Costs were adjusted for inflation to 2017 prices. Results We reviewed 33 relevant articles, of which 20 studies reported the productivity losses, and 31 studies reported productivity costs. The productivity costs varied between US6.7–1445.9 and US3.81332forhospitalizedandoutpatientnonfatalepisodes,respectively.TheproductivitycostassociatedwithfataldengueepisodesvariedbetweenUS3.8–1332 for hospitalized and outpatient non-fatal episodes, respectively. The productivity cost associated with fatal dengue episodes varied between US12,035-1,453,237. A large degree of this variation was due to the range of different countries being investigated and their corresponding economic status. However, estimates for a given country still showed notable variation. Conclusion We found that the estimated productivity costs associated with dengue episodes in Asia are notable. However, owing to the significant variation in methodology and approaches applied, the reported productivity costs of dengue episodes were often not directly comparable across studies. More consistent and transparent methodology regarding the estimation of productivity costs would help the estimates of the economic burden of dengue be more accurate and comparable across studies

    Assessing fitness-for-purpose and comparing the suitability of COVID-19 multi-country models for local contexts and users

    Get PDF
    Background: Mathematical models have been used throughout the COVID-19 pandemic to inform policymaking decisions. The COVID-19 Multi-Model Comparison Collaboration (CMCC) was established to provide country governments, particularly low- and middle-income countries (LMICs), and other model users with an overview of the aims, capabilities and limits of the main multi-country COVID-19 models to optimise their usefulness in the COVID-19 response. Methods: Seven models were identified that satisfied the inclusion criteria for the model comparison and had creators that were willing to participate in this analysis. A questionnaire, extraction tables and interview structure were developed to be used for each model, these tools had the aim of capturing the model characteristics deemed of greatest importance based on discussions with the Policy Group. The questionnaires were first completed by the CMCC Technical group using publicly available information, before further clarification and verification was obtained during interviews with the model developers. The fitness-for-purpose flow chart for assessing the appropriateness for use of different COVID-19 models was developed jointly by the CMCC Technical Group and Policy Group. Results: A flow chart of key questions to assess the fitness-for-purpose of commonly used COVID-19 epidemiological models was developed, with focus placed on their use in LMICs. Furthermore, each model was summarised with a description of the main characteristics, as well as the level of engagement and expertise required to use or adapt these models to LMIC settings. Conclusions: This work formalises a process for engagement with models, which is often done on an ad-hoc basis, with recommendations for both policymakers and model developers and should improve modelling use in policy decision making

    Lives saved with vaccination for 10 pathogens across 112 countries in a pre-COVID-19 world.

    Get PDF
    BackgroundVaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries.MethodsTwenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios.ResultsWe estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases.ConclusionsThis study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future.FundingVIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication

    Key questions for modelling COVID-19 exit strategies

    Get PDF
    Combinations of intense non-pharmaceutical interventions ('lockdowns') were introduced in countries worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement lockdown exit strategies that allow restrictions to be relaxed while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, will allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. The roadmap requires a global collaborative effort from the scientific community and policy-makers, and is made up of three parts: i) improve estimation of key epidemiological parameters; ii) understand sources of heterogeneity in populations; iii) focus on requirements for data collection, particularly in Low-to-Middle-Income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health

    Transient receptor potential canonical 4 and 5 proteins as targets in cancer therapeutics

    Get PDF
    Novel approaches towards cancer therapy are urgently needed. One approach might be to target ion channels mediating Ca²+ entry because of the critical roles played by Ca²+ in many cell types, including cancer cells. There are several types of these ion channels, but here we address those formed by assembly of transient receptor potential canonical (TRPC) proteins, particularly those which involve two closely related members of the family: TRPC4 and TRPC5. We focus on these proteins because recent studies point to roles in important aspects of cancer: drug resistance, transmission of drug resistance through extracellular vesicles, tumour vascularisation, and evoked cancer cell death by the TRPC4/5 channel activator (−)-englerin A. We conclude that further research is both justified and necessary before these proteins can be considered as strong targets for anti-cancer cell drug discovery programmes. It is nevertheless already apparent that inhibitors of the channels would be unlikely to cause significant adverse effects, but, rather, have other effects which may be beneficial in the context of cancer and chemotherapy, potentially including suppression of innate fear, visceral pain and pathological cardiac remodelling

    Correction for Johansson et al., An open challenge to advance probabilistic forecasting for dengue epidemics.

    Get PDF
    Correction for “An open challenge to advance probabilistic forecasting for dengue epidemics,” by Michael A. Johansson, Karyn M. Apfeldorf, Scott Dobson, Jason Devita, Anna L. Buczak, Benjamin Baugher, Linda J. Moniz, Thomas Bagley, Steven M. Babin, Erhan Guven, Teresa K. Yamana, Jeffrey Shaman, Terry Moschou, Nick Lothian, Aaron Lane, Grant Osborne, Gao Jiang, Logan C. Brooks, David C. Farrow, Sangwon Hyun, Ryan J. Tibshirani, Roni Rosenfeld, Justin Lessler, Nicholas G. Reich, Derek A. T. Cummings, Stephen A. Lauer, Sean M. Moore, Hannah E. Clapham, Rachel Lowe, Trevor C. Bailey, Markel García-Díez, Marilia Sá Carvalho, Xavier Rodó, Tridip Sardar, Richard Paul, Evan L. Ray, Krzysztof Sakrejda, Alexandria C. Brown, Xi Meng, Osonde Osoba, Raffaele Vardavas, David Manheim, Melinda Moore, Dhananjai M. Rao, Travis C. Porco, Sarah Ackley, Fengchen Liu, Lee Worden, Matteo Convertino, Yang Liu, Abraham Reddy, Eloy Ortiz, Jorge Rivero, Humberto Brito, Alicia Juarrero, Leah R. Johnson, Robert B. Gramacy, Jeremy M. Cohen, Erin A. Mordecai, Courtney C. Murdock, Jason R. Rohr, Sadie J. Ryan, Anna M. Stewart-Ibarra, Daniel P. Weikel, Antarpreet Jutla, Rakibul Khan, Marissa Poultney, Rita R. Colwell, Brenda Rivera-García, Christopher M. Barker, Jesse E. Bell, Matthew Biggerstaff, David Swerdlow, Luis Mier-y-Teran-Romero, Brett M. Forshey, Juli Trtanj, Jason Asher, Matt Clay, Harold S. Margolis, Andrew M. Hebbeler, Dylan George, and Jean-Paul Chretien, which was first published November 11, 2019; 10.1073/pnas.1909865116. The authors note that the affiliation for Xavier Rodó should instead appear as Catalan Institution for Research and Advanced Studies (ICREA) and Climate and Health Program, Barcelona Institute for Global Health (ISGlobal). The corrected author and affiliation lines appear below. The online version has been corrected

    Estimating the health effects of COVID-19-related immunisation disruptions in 112 countries during 2020-30: a modelling study.

    Get PDF
    BACKGROUND: There have been declines in global immunisation coverage due to the COVID-19 pandemic. Recovery has begun but is geographically variable. This disruption has led to under-immunised cohorts and interrupted progress in reducing vaccine-preventable disease burden. There have, so far, been few studies of the effects of coverage disruption on vaccine effects. We aimed to quantify the effects of vaccine-coverage disruption on routine and campaign immunisation services, identify cohorts and regions that could particularly benefit from catch-up activities, and establish if losses in effect could be recovered. METHODS: For this modelling study, we used modelling groups from the Vaccine Impact Modelling Consortium from 112 low-income and middle-income countries to estimate vaccine effect for 14 pathogens. One set of modelling estimates used vaccine-coverage data from 1937 to 2021 for a subset of vaccine-preventable, outbreak-prone or priority diseases (ie, measles, rubella, hepatitis B, human papillomavirus [HPV], meningitis A, and yellow fever) to examine mitigation measures, hereafter referred to as recovery runs. The second set of estimates were conducted with vaccine-coverage data from 1937 to 2020, used to calculate effect ratios (ie, the burden averted per dose) for all 14 included vaccines and diseases, hereafter referred to as full runs. Both runs were modelled from Jan 1, 2000, to Dec 31, 2100. Countries were included if they were in the Gavi, the Vaccine Alliance portfolio; had notable burden; or had notable strategic vaccination activities. These countries represented the majority of global vaccine-preventable disease burden. Vaccine coverage was informed by historical estimates from WHO-UNICEF Estimates of National Immunization Coverage and the immunisation repository of WHO for data up to and including 2021. From 2022 onwards, we estimated coverage on the basis of guidance about campaign frequency, non-linear assumptions about the recovery of routine immunisation to pre-disruption magnitude, and 2030 endpoints informed by the WHO Immunization Agenda 2030 aims and expert consultation. We examined three main scenarios: no disruption, baseline recovery, and baseline recovery and catch-up. FINDINGS: We estimated that disruption to measles, rubella, HPV, hepatitis B, meningitis A, and yellow fever vaccination could lead to 49 119 additional deaths (95% credible interval [CrI] 17 248-134 941) during calendar years 2020-30, largely due to measles. For years of vaccination 2020-30 for all 14 pathogens, disruption could lead to a 2·66% (95% CrI 2·52-2·81) reduction in long-term effect from 37 378 194 deaths averted (34 450 249-40 241 202) to 36 410 559 deaths averted (33 515 397-39 241 799). We estimated that catch-up activities could avert 78·9% (40·4-151·4) of excess deaths between calendar years 2023 and 2030 (ie, 18 900 [7037-60 223] of 25 356 [9859-75 073]). INTERPRETATION: Our results highlight the importance of the timing of catch-up activities, considering estimated burden to improve vaccine coverage in affected cohorts. We estimated that mitigation measures for measles and yellow fever were particularly effective at reducing excess burden in the short term. Additionally, the high long-term effect of HPV vaccine as an important cervical-cancer prevention tool warrants continued immunisation efforts after disruption. FUNDING: The Vaccine Impact Modelling Consortium, funded by Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation. TRANSLATIONS: For the Arabic, Chinese, French, Portguese and Spanish translations of the abstract see Supplementary Materials section
    corecore