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Abbreviations
TRPC  Transient receptor potential canonical
TRPV  Transient receptor potential vanilloid
TRPM  Transient receptor potential melastatin
TRPA  Transient receptor potential ankyrin
TRPP  Transient receptor potential polycystin
TRPML  Transient receptor potential mucolipin
2-APB  2-Aminoethoxydiphenyl borate
VEGF  Vascular endothelial growth factor
EA  (−)-Englerin A
HEK  Human embryonic kidney
MDR  Multi-drug resistance
EVs  Extracellular vesicles

Introduction

Despite advancements in prevention strategies, diagnostics 
and therapeutics, cancer remains a major worldwide health 
problem. Unacceptably high rates of treatment failure exist, 
often due to the adaptable nature of tumour cells. In many 
cases, localised non-metastatic cancers can be treated with 
surgery alone, but for those that relapse or present with 
metastatic disease, systemic treatment options are typically 
required. Chemotherapy is a common approach, but this is 
associated with only modest benefit in most solid tumours 
and it is ineffective in others, such as renal cell carcinoma. 
More recently, a number of small-molecule kinase inhibi-
tors have been introduced, but these agents are invariably 
associated with either innate or acquired drug resistance. 
Furthermore, currently used therapies are frequently asso-
ciated with significant adverse effects. Novel pharmaco-
logical targets and approaches for cancer therapy are in 
high demand, and various ion channels have been sug-
gested as potentially useful targets for therapies; notable 
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amongst them are the channels which are permeable to 
Ca2+ and which therefore often allow Ca2+ entry into cells 
(Arcangeli et al. 2009; Monteith et al. 2012; Prevarskaya 
et al. 2011).

There are many types of Ca2+-permeable channel, but 
here we focus on those formed by assembly of transient 
receptor potential canonical (TRPC) proteins and particu-
larly those which involve two closely related members of 
the family: TRPC4 and TRPC5. We focus on these pro-
teins because recent studies suggest that they have roles in 
several important aspects of cancer: drug resistance, trans-
mission of drug resistance through extracellular vesicles, 
tumour vascularisation, and evoked cancer cell death. We 
describe the experimental evidence and discuss the impli-
cations for future potential studies and therapeutic strate-
gies. We address not only the potential direct relevance to 
cancer cells but also relevance to other aspects of biology 
which are important for many cancer patients.

Control of cell function by intracellular Ca2+

This review focusses on the Ca2+ permeability of TRPC 
channels. Ca2+ enters cells through a variety of ion chan-
nels and is particularly recognised for its importance as a 
versatile dynamic intracellular regulator of mammalian 
cell biology (Berridge et al. 2000; Clapham 2007). Finely 
tuned control of the free intracellular Ca2+ concentration 
is fundamental for the survival and death of cells in mam-
mals as well as many other types of animal. Plasma mem-
brane ion channels that are permeable to Ca2+ and allow 
Ca2+ entry down its steep gradient often have positive, 
although not necessarily beneficial, effects on cells which 
include increased proliferation, migration and invasiveness 
(Clapham 2007; Chen et al. 2013). Excessive elevation of 
intracellular Ca2+ is conversely associated with cytotoxic-
ity (Clapham 2007; Berridge et al. 2000; Fleckenstein et al. 
1974; Orrenius et al. 2003).

Transient receptor potential (TRP) proteins 
and channels

TRPs are membrane proteins which assemble as tetram-
ers around a central ion pore to form non-selective cationic 
channels, many of which are Ca2+ permeable. There are 28 
genes encoding the different TRPs. A greater number of 
channels exist because of heteromeric assembly involving 
more than one type of TRP. Although there is differential 
expression of TRPs in different cell types and tissues, most 
TRPs are quite broadly expressed. They are expressed in 
excitable cells, where they contribute positively to electri-
cal excitability alongside voltage-gated Ca2+ channels, and 
in non-excitable cells, where they promote migration and 

proliferation and other relatively slow cell changes (Zheng 
and Phelan 2014; Abramowitz and Birnbaumer 2009; Al-
Shawaf et al. 2010; Zeng et al. 2013). The initial discov-
ery of TRP channels arose in photo-transduction studies in 
Drosophila melanogaster. Mutation in this fly’s TRP gene 
resulted in a transient, rather than the normally sustained, 
membrane depolarisation in response to bright light, hence 
the name transient receptor potential (Minke et al. 1975). 
Many mammalian homologues were subsequently discov-
ered and cloned, starting with TRP canonical 1 (TRPC1) 
(Wes et al. 1995; Birnbaumer 2009; Beech 2013; Bon and 
Beech 2013). The TRP super-family is now categorised 
into subgroups: TRP canonical (TRPC), TRP vanilloid 
(TRPV), TRP melastatin (TRPM), TRP ankyrin (TRPA), 
TRP polycystin (TRPP) and TRP mucolipin (TRPML) 
(Damann et al. 2008; Birnbaumer 2009).

Voltage-gated channels are considered the proteins most 
structurally related to the TRPs; akin to the KV1.2 volt-
age-gated potassium channel, for which there is a crystal 
structure, all TRPs are suggested to have six membrane-
spanning segments and intracellular N- and C-termini. Like 
KV1 channels, TRP channels may arise from either four 
identical or four different members of the family (i.e. they 
may be homotetramers or heterotetramers). Experimental 
tests of this hypothesis have supported this topology, and 
cryo-electron microscopy (EM) structural data for two of 
the TRPs, TRPV1 and TRPA1, have further corroborated it 
(Liao et al. 2013; Paulsen et al. 2015).

Channels which contain TRPC4 and TRPC5

There are seven TRPC types in mammals, and all are con-
sidered to contribute to plasma membrane non-selective 
cationic channels which confer Na+ as well as Ca2+ per-
meability. The Na+ entry may contribute functionally by 
helping to depolarise the membrane potential and elevate 
intracellular Ca2+ indirectly via Na+–Ca2+ exchange. In 
humans and the great apes, TRPC2 protein is absent, being 
encoded by a pseudogene in these species (Vannier et al. 
1999; Damann et al. 2008; Abramowitz and Birnbaumer 
2009). The TRPCs are notable amongst the TRPs for being 
likely to exist as heteromers. TRPC1 may not form func-
tional homomeric channels at all, yet there is compelling 
evidence for its distinctive and important contributions to 
heteromers with TRPC4 and TRPC5. Although TRPC4 
and TRPC5 are capable of forming homomeric chan-
nels, TRPC1 is very broadly expressed, and so they prob-
ably commonly exist physiologically as heteromers with 
TRPC1. Further promiscuity has been suggested, even 
outside the TRPC family, stretching to TRPV4 and TRPP2 
(Bai et al. 2008; Ma et al. 2010; Strubing et al. 2001; Suku-
mar et al. 2012; Xu et al. 2008).
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The TRPC channels almost certainly do not have a sin-
gle physiological activator. As with other TRP channels, 
there is promiscuity, also called versatility, of activation, 
which means that multiple activators have been identified 
and several are often relevant in physiology and patho-
physiology, suggesting context-dependent activation. Also 
consistent with concepts for other TRPs, there are exam-
ples where modulators of TRPC channels are not endog-
enous physiological factors but exogenous chemicals from 
plants, suggesting that the channels act at least in part to 
integrate humans and other mammals with the external 
environment. Modulators of the channels include receptor 
agonists, hydrogen peroxide, mild acidification, toxic metal 
ions, oxidised phospholipids, galangin and ω-3 fatty acids 
(Beech 2013; Tominaga et al. 1998; McKemy 2005; Jordt 
et al. 2004; Akbulut et al. 2015; Sukumar et al. 2012; Nay-
lor et al. 2015).

Tools for studying roles of TRPC4‑ 
and TRPC5‑containing channels

Selective and potent pharmacological agents to modu-
late TRPC4 and TRPC5 channels have been lacking, but 
this is an active area of investigation and so better tools 
should be available in the near future for exploring the 
roles of the channels (Bon and Beech 2013). Some com-
monly used small-molecule inhibitors such as SKF-93635 
and 2-APB are non-specific, and the arising data not of 
great value. ML204 and clemizole hydrochloride are more 
recently identified and more specific, inhibiting the chan-
nels in the micromolar concentration range (Miller et al. 
2011; Richter et al. 2014a). Small-molecule activators 
of the channels include riluzole and rosiglitazone, but 
again these are non-specific and lack potency (Jung et al. 
2003; Majeed et al. 2011; Richter et al. 2014b; Flemming 
et al. 2006). Recently we discovered the natural product 
(−)-englerin A as the first selective and potent small-mol-
ecule activator of TRPC4- and TRPC5-containing chan-
nels (Akbulut et al. 2015). High-quality small-molecule 
modulators are especially valuable for understanding the 
roles of the channels in human tissues and cells obtained 
from clinical samples.

Short interfering and short hairpin RNAs are used for 
studying the channels in cells which can be transfected 
or which are suitable for viral delivery methods (Carson 
et al. 2015; Ma et al. 2014; Stewart et al. 2015). There 
are mice available with disrupted TRPC4 or TRPC5 
genes (Phelan et al. 2013; Tsvilovskyy et al. 2009). 
Extracellularly acting inhibitor antibodies have been 
developed to TRPC1, TRPC4 and TRPC5, which have 
been useful in revealing roles of the channels (Sukumar 
et al. 2012; Xu et al. 2005, 2006; Mohl et al. 2011; Akb-
ulut et al. 2015).

Cancer‑independent roles of TRPC4‑ 
and TRPC5‑containing channels

Despite the limitations of the TRPC4 and TRPC5 tools, 
there is compelling evidence for important roles of TRPC4- 
and TRPC5-containing channels, especially in animal mod-
els of human patho-physiology or in clinical samples. The 
channels have positive roles in epilepsy, innate fear, pain, 
adverse cardiac remodelling as well as other aspects of 
physiology and patho-physiology (Zheng and Phelan 2014; 
Phelan et al. 2013; Riccio et al. 2014; Westlund et al. 2014; 
Bon and Beech 2013; Wei et al. 2015; Camacho Londono 
et al. 2015). TRPC5 knockout mice exhibited reduced 
innate fear (Riccio et al. 2014), and TRPC4 knockout mice 
presented with diminished anxiety (Riccio et al. 2014). 
TRPC1 was up-regulated and had a positive role in neoin-
timal hyperplasia of human saphenous vein, where it may 
function in partnership with TRPC5 (Kumar et al. 2006; Xu 
et al. 2006). In vascular smooth muscle cells from human 
saphenous vein, TRPC5-dependent channels were activated 
by sphingosine-1-phosphate and helped to drive cell migra-
tion (Xu et al. 2006). TRPC5 was also implicated in kidney 
barrier function, protecting against albuminuria (Schal-
decker et al. 2013). TRPC4 was required for the transmis-
sion and detection of the colonic visceral pain sensation 
associated with application of mustard oil. TRPC4−/− 
mice and mice treated with the TRPC4 inhibitor ML204 
showed less lower-body licking and abdominal retractions 
in response to application of mustard oil (Westlund et al. 
2014). Amygdaloid TRPC4 and TRPC5 contributed to 
maintenance of pain hypersensitivity and neuropathy (Wei 
et al. 2015).

Direct relevance of TRPC4 and TRPC5 
to cancers?

Malignant transformation is associated with diverse molec-
ular changes which include alterations in the expression 
and activity of membrane channels and transporters (Herve 
2015). Although still in its infancy, there is growing inter-
est in understanding these changes within particular can-
cer types and exploring how modulation of these chan-
nels might lead to a novel treatment modality. The clinical 
relevance of TRP channel gene expression has recently 
been investigated (Park et al. 2016). Here, we focus on the 
emerging data related to TRPC4 and TRPC5.

Relationship to vascular endothelial growth factor 
(VEGF) signalling and angiogenesis

Tumour angiogenesis is a hallmark of cancer and, as such, 
represents a promising therapeutic target. Currently used 
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VEGF pathway-targeted drugs, such as the VEGF recep-
tor tyrosine kinase inhibitors, are, however, not effective 
in all cancers. Increased understanding of VEGF signalling 
and the mechanisms underlying tumour vascularisation is 
required in order to realise the full potential of this strategy 
(Vasudev and Reynolds 2014).

Several studies suggest roles of TRPC channels in angi-
ogenesis. Knockdown of TRPC4 and TRPC5 inhibited tube 
formation in an endothelial cell line (Antigny et al. 2012). 
Furthermore, a role for TRPC4 in the development of reti-
nal neovascularisation has been suggested. TRPC4 was up-
regulated in hypoxia, intravitreal injection of TRPC4 short 
interfering RNA reduced VEGF-induced retinal neovascu-
larisation in oxygen-induced retinopathy, and TRPC4 short 
interfering RNA suppressed proliferation and Matrigel-
based tube formation of human dermal microvascular 
endothelial cells (Song et al. 2015). Consistent with these 
observations and the involvement of heteromeric chan-
nels, TRPC1 gene-disrupted zebrafish showed disrupted 
VEGF-dependent angiogenic sprouting (Yu et al. 2010). 
TRPC1 knockdown also suppressed migration and prolif-
eration in endothelial progenitor cells (Kuang et al. 2012). 
However, the TRPC1 inhibitor antibody had relatively little 
effect against VEGF-evoked Ca2+ entry of some types of 
endothelial cell, where Orai1 channels instead played roles 
(Li et al. 2011). Moreover, down-regulation of TRPC4 has 
been suggested as a trigger for tumour angiogenesis in 
renal cell carcinoma via a mechanism involving reduced 
secretion of the angiogenesis inhibitor thrombospondin-1 
(Veliceasa et al. 2007). The implications of these channels 
for tumour angiogenesis require further investigation, and 
there is a significant possibility of both negative and posi-
tive implications depending on the context and contribu-
tions of other Ca2+-permeable channels.

Potential role of TRPC5 in chemotherapy resistance

A special role for TRPC5 has been suggested in the devel-
opment of resistance to cancer chemotherapy. TRPC5 and 
the multi-drug resistance (MDR) transporter, p-glycopro-
tein, were found to be up-regulated in the MCF-7 breast 
cancer cell line following repeated exposure to adriamycin 
until development of drug resistance (Ma et al. 2012). Inhi-
bition of TRPC5 suppressed the effect on p-glycoprotein 
expression, leading to the suggestion that up-regulation of 
p-glycoprotein is downstream of TRPC5 channel activity. 
The effect was observed not only in vitro but also when 
MCF-7 cells were used in xenograft studies in mice. A sim-
ilar effect was observed with the drug paclitaxel.

Subsequent research by the same group found TRPC5 
in extracellular vesicles of the MCF-7 cells and suggested 
that chemotherapy resistance might be transferred to other 
cancer cells through these vesicles and the introduction of 

TRPC5 into other cells (Ma et al. 2014). Histological anal-
ysis of breast cancer tissue from patients before and after 
chemotherapy provided support for the idea that a similar 
phenomenon occurs in tumours of patients. The investiga-
tors suggested that identification of tumour-specific TRPC5 
in circulating extracellular vesicles might provide a window 
on the clinical outcome of chemotherapy. In a related study, 
ATP-binding cassette subfamily B member 1, a member of 
the MDR family of proteins, was found to be up-regulated 
because of TRPC5 channel activity in colorectal carcinoma 
cells (Wang et al. 2015).

Activation of TRPC4/5 channels by (−)‑englerin A (EA) 
and the relationship to renal cell carcinoma cells

Bioactive natural products have proved to be valuable 
starting points for drug discovery, and screening efforts 
are continuously on-going to find previously unrecog-
nised natural products with potent and potentially useful 
effects. The diverse genus Phyllanthus is a known source 
of biologically active compounds. One of them, Phyllan-
thus engleri, grows in South East Africa, where the fruit is 
eaten, tea is made from the leaves as a remedy for com-
mon ailments, and burning of the roots generates a toxic 
smoke. About 7 years ago, EA (Fig. 1a) was isolated from 
this plant and included in a screen against the NCI-60 can-
cer cell line panel (Ratnayake et al. 2009). It was found to 
have a rapid cytotoxic effect on certain types of cancer cell 
line at nanomolar concentrations. In particular, renal cell 
carcinoma cell lines were affected as well as a triple-neg-
ative breast cancer cell line (Ratnayake et al. 2009). Sub-
sequent studies confirmed the cytotoxic effect on these cell 
lines (see below). Because of these effects, there were then 
major medicinal chemistry efforts to devise methods for 
efficient synthesis of EA (Radtke et al. 2011) and to find its 
protein target or targets (Sourbier et al. 2013; Akbulut et al. 
2015; Carson et al. 2015).

Sourbier et al. suggested that EA activates protein kinase 
C θ to starve cells of glucose (Sourbier et al. 2013). How-
ever, Akbulut et al. found that this protein kinase C was 
not expressed in one of the most EA-sensitive renal can-
cer cell lines (Akbulut et al. 2015). Initial affinity-based 
chemical proteomics studies yielded no specific target, an 
explanation for which was considered to be that the target 
is a low-abundance membrane protein such as a G protein-
coupled receptor or ion channel. This led to identification 
of TRPC4 and TRPC5 channels as targets of EA (Akbulut 
et al. 2015), and these targets were subsequently confirmed 
independently by another group (Carson et al. 2015).

EA turned out to be a remarkably efficacious, potent, 
specific and stereo-selective activator of TRPC4 and 
TRPC5 channels and TRPC1/TRPC4 and TRPC1/TRPC5 
heteromeric channels (Akbulut et al. 2015). As little as 



615Eur Biophys J (2016) 45:611–620 

1 3

3 nM EA was enough to activate Ca2+ entry through 
TRPC4 channels or TRPC5 channels over-expressed in 
human embryonic kidney (HEK) 293 cells. The EC50 val-
ues for TRPC4 and TRPC5 were 11.2 and 7.6 nM (Fig. 1b, 
c). EA activated the channels from the outer face of excised 
membrane patches in the absence of co-factors, consistent 
with a direct action on the channels. In the A498 renal cell 
carcinoma cell line, EA evoked Ca2+ entry through endog-
enous channels with an EC50 of 9.5 nM, and this response 
was suppressed by ML204, the small-molecule inhibitor of 
TRPC4 channels (Fig. 1d). Whole-cell patch-clamp record-
ings suggested that the channels activated were most prob-
ably heteromers of TRPC1 and TRPC4, because the rever-
sal potential and shape of the current–voltage relationship 
were similar to those of over-expressed TRPC1/TRPC4 
channels (Fig. 1e, f). Importantly, the cytotoxic effect of 
EA could be reconstituted in otherwise resistant cells by 
over-expressing TRPC4 or TRPC5 and suppressed in can-
cer cell lines by knockdown of TRPC4 (Akbulut et al. 
2015; Carson et al. 2015).

Although the initial study suggested that EA at 5 mg 
kg−1 lacked toxicity in vivo in mice and was effective 
against xenograft tumours (Sourbier et al. 2013), we found 

toxicity at 5 mg kg−1 (but not 2 mg kg−1) (unpublished 
data) and Carson et al. expressed concern about toxicity in 
rodents depending on the route of administration and dose 
(Carson et al. 2015). One challenge has been the formula-
tion for in vivo studies, but a more serious problem has 
been the metabolic instability of EA, making it difficult 
to establish a meaningful dosing regimen (Carson et al. 
2015). After administration of EA to rats at 5 mg kg−1, EA 
was detected in the blood at no more than 12 nM (Carson 
et al. 2015). This concentration is quite low, but it would 
be expected to activate endogenous TRPC1/TRPC4 chan-
nels based on in vitro data for A498 cells (Akbulut et al. 
2015). We await studies on more metabolically stable EA 
derivatives which are active at the channels and informa-
tion on whether the toxicity is mediated by TRPC4- or 
TRPC5-containing channels. At this stage, we can say 
that, in principle, it turns out to be possible to achieve 
rapid cytotoxicity through a potent and highly efficacious 
activator of TRPC4/TRPC5-containing channels and that 
such an agent might have potential as a starting point for 
a novel anti-cancer drug. There is, nevertheless, more 
research needed if the in vivo challenges of EA are to be 
overcome.

Fig. 1  Discovery of (−)-englerin A (EA) as a novel potent and 
efficacious TRPC4/5 channel activator. a Chemical structure of 
EA (Akbulut et al. 2015). b–d Measurements of the free intracel-
lular calcium ion (Ca2+) concentration shown as the change (Δ) in 
fura-2 fluorescence. b Concentration–response data for EA in HEK 
cells over-expressing TRPC4 (HEK-TRPC4) indicating the 50 % 
maximum effect (EC50) at 11.2 nM (Akbulut et al. 2015). c As for 
b except the cells were genetically modified HEK 293 cells induced 
to over-express TRPC5 (HEK-TRPC5). The fitted curve is a Hill 

equation indicating an EC50 of 7.59 nM (Akbulut et al. 2015). d 
Mean responses after 4 min exposure to vehicle, 1 µM EA, or 1 µM 
EA in the presence of 5 µM ML204 (Akbulut et al. 2015). e Whole-
cell current–voltage relationship of membrane current from a single 
A498 cell during ramp changes in membrane voltage from −100 to 
+100 mV applied every 10 s. 100 nM EA or its vehicle were bath-
applied (Akbulut et al. 2015). f As (e) except with genetically modi-
fied HEK 293 cells induced to over-express TRPC4 and transiently 
express TRPC1 (HEK C4 + C1) (Akbulut et al. 2015)
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The effect of EA was initially emphasised in renal cell 
carcinoma cells, but it is also active in other but not all can-
cer cell lines, including cells derived from patients with 
triple-negative breast cancer and Ewing’s sarcoma (Ratnay-
ake et al. 2009; Carson et al. 2015; Caropreso et al. 2016).

Inhibition of TRPC4‑containing channels in cancer cell 
lines and the EA paradox

In non-small cell lung cancer, the expression of TRPC1 
and TRPC4 was suggested to correlate with tumour grade 
(Jiang et al. 2013) and treatment with short interfering 
RNA targeted to TRPC1 and TRPC4 or inhibitor anti-
bodies suppressed proliferation of an ovarian carcinoma 
cell line (Zeng et al. 2013). Conversely, over-expressing 
TRPC1 or TRPC4 increased proliferation (Zeng et al. 
2013). These studies support the idea that TRPC4-contain-
ing channels are functionally significant in certain types 
of cancer cell line. They also reinforce the apparent para-
dox of the EA findings, where activation of the channels 
leads to rapid cell death amongst certain cancer cell lines. 
One explanation could be that it is simply a matter of the 
bell-shaped relationship between intracellular Ca2+ con-
centration and cell function, whereby modest elevations 
of Ca2+ are beneficial for cells, encouraging proliferation 

and migration, whereas high elevations, for example about 
1 µM, are essentially toxic for cells, encouraging apopto-
sis and necrosis (Orrenius et al. 2003); that is, inhibition 
of basal activity of the channels might inhibit at least part 
of the unwanted proliferation and migration in cancer cells, 
whereas strong activation by a substance like EA might 
cause rapid cytotoxicity.

Conclusions

There are still few studies of TRPC4 and TRPC5 and 
TRPC4- and TRPC5-containing channels in cancer cell 
lines and even fewer on human cancer itself (Table 1). 
Therefore, any conclusions can only be preliminary. The 
studies reported so far do, nevertheless, suggest that there 
might be benefits for some cancer patients in taking a med-
ication that inhibits or, paradoxically, activates these chan-
nels. Resistance to chemotherapy, cancer cell proliferation, 
cancer cell migration and tumour vascularisation might 
be suppressed, as well as the potential for rapid induction 
of selective cytotoxicity in certain types of cancer cell, 
such as those of renal cell carcinoma (Fig. 2). It should 
be emphasised, however, that most of the data supporting 
such suggestions have arisen from studies of cancer cell 

Fig. 2  Simplified overview of TRPC4/5 channels as potential thera-
peutic targets in cancer. a VEGF-activated TRPC1/4/5 channels 
allow non-selective cation entry. A modest rise in intracellular Ca2+ 
can lead to an increase in migration, proliferation and tubulogen-
esis of endothelial cells, leading to angiogenesis. b TRPC5 drives 
chemoresistance in breast cancer cells as it leads to up-regulation 

of p-glycoprotein (pgp) which acts to pump drugs from the cell. 
TRPC5 is expressed in extracellular vesicles (EVs), and a critical 
role of TRPC5-containing EVs is in the transfer of drug resistance 
to non-chemoresistant recipient cells. c (−)-Englerin A is a selective 
TRPC1/4/5 channel activator which causes influx of Ca2+ and Na+ 
into certain types of cancer cell, which then causes cell death
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lines, which may often differ substantially from the cancer 
cells populating the tumours of patients. Moreover, even 
if suitable small-molecule modulators of the channels can 
be identified, it needs to be recognised that TRPC4- and 
TRPC5-containing channels are just one mechanism by 
which a cancer cell might regulate the intracellular Ca2+ 
required for Ca2+-dependent cell processes; that is, it is 
quite conceivable that modulation of the channels could 
relatively easily be circumvented by an ever-adapting can-
cer cell.

Despite this recommendation for caution, we conclude 
that TRPC4 and TRPC5 represent potentially attractive tar-
gets for cancer therapeutics. Their diverse role in many of 
the aspects that drive the metastatic process warrants con-
tinued research into their context-dependent function. It is 
already apparent that inhibitors of the channels would be 
unlikely to cause significant adverse effects. Instead, it is 
conceivable that they may be associated with other benefits 
to patients with advanced malignancy, including suppres-
sion of innate fear, pain and pathological cardiac remodel-
ling, where inhibition of these channels may be beneficial 
(Camacho Londono et al. 2015; Phelan et al. 2013; Zheng 
and Phelan 2014; Riccio et al. 2014; Wei et al. 2015; West-
lund et al. 2014; Bon and Beech 2013).

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give 
appropriate credit to the original author(s) and the source, provide a 
link to the Creative Commons license, and indicate if changes were 
made.
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