4,601 research outputs found

    The Viscosity and Thermal Conductivity Coefficients of Dilute Neon, Krypton, and Xenon

    Get PDF
    Viscosity and thermoconductivity coefficients of dilute neon, krypton, and xeno

    Looking and Thinking: How individuals with Williams syndrome make judgements about mental states

    Get PDF
    Individuals with the neuro-developmental disorder Williams syndrome (WS) are characterised by a combination of features which makes this group vulnerable socially, including mild-moderate cognitive difficulties, pro-social drive, and indiscriminate trust. The purpose of this study was to explore a key socio-communicative skill in individuals with WS, namely, mental state recognition abilities. We explored this skill in a detailed way by looking at how well individuals with WS recognise complex everyday mental states, and how they allocate their attention while making these judgements. Participants with WS were matched to two typically developing groups for comparison purposes, a verbal ability matched group and a chronological age matched group. While eye movements were recorded, participants were shown displays of eight different mental states in static and dynamic form, and they performed a forced-choice judgement on the mental state. Mental states were easier to recognise in dynamic form rather than static form. Mental state recognition ability for individuals with WS was poorer than expected by their chronological age, and at the level expected by their verbal ability. However, the pattern of mental state recognition for participants with WS varied according to mental state, and we found some interesting links between ease/difficulty recognising some mental states (worried/do not trust) and the classic behavioural profile associated with WS (high anxiety/indiscriminate trust). Furthermore, eye tracking data revealed that participants with WS allocated their attention atypically, with less time spent attending the information from the face regions. This challenges the widely held understanding of WS being associated with prolonged face and eye gaze, and indicates that there is more heterogeneity within this disorder in terms of socio-perception than previous reports would suggest

    Insulin clearance and the incidence of type 2 diabetes in Hispanics and African Americans: the IRAS Family Study.

    Get PDF
    ObjectiveWe aimed to identify factors that are independently associated with the metabolic clearance rate of insulin (MCRI) and to examine the association of MCRI with incident type 2 diabetes in nondiabetic Hispanics and African Americans.Research design and methodsWe investigated 1,116 participants in the Insulin Resistance Atherosclerosis Study (IRAS) Family Study with baseline examinations from 2000 to 2002 and follow-up examinations from 2005 to 2006. Insulin sensitivity (S(I)), acute insulin response (AIR), and MCRI were determined at baseline from frequently sampled intravenous glucose tolerance tests. MCRI was calculated as the ratio of the insulin dose over the incremental area under the curve of insulin. Incident diabetes was defined as fasting glucose ≥126 mg/dL or antidiabetic medication use by self-report.ResultsWe observed that S(I) and HDL cholesterol were independent positive correlates of MCRI, whereas fasting insulin, fasting glucose, subcutaneous adipose tissue, visceral adipose tissue, and AIR were independent negative correlates (all P < 0.05) at baseline. After 5 years of follow-up, 71 (6.4%) participants developed type 2 diabetes. Lower MCRI was associated with a higher risk of incident diabetes after adjusting for demographics, lifestyle factors, HDL cholesterol, indexes of obesity and adiposity, and insulin secretion (odds ratio 2.01 [95% CI 1.30-3.10], P = 0.0064, per one-SD decrease in loge-transformed MCRI).ConclusionsOur data showed that lower MCRI predicts the incidence of type 2 diabetes

    Analysis of lower limb internal kinetics and electromyography in elite race walking.

    Get PDF
    The aim of this study was to analyse lower limb joint moments, powers and electromyography patterns in elite race walking. Twenty international male and female race walkers performed at their competitive pace in a laboratory setting. The collection of ground reaction forces (1000 Hz) was synchronised with two-dimensional high-speed videography (100 Hz) and electromyography of seven lower limb muscles (1000 Hz). As well as measuring key performance variables such as speed and stride length, normalised joint moments and powers were calculated. The rule in race walking which requires the knee to be extended from initial contact to midstance effectively made the knee redundant during stance with regard to energy generation. Instead, the leg functioned as a rigid lever which affected the role of the hip and ankle joints. The main contributors to energy generation were the hip extensors during late swing and early stance, and the ankle plantarflexors during late stance. The restricted functioning of the knee during stance meant that the importance of the swing leg in contributing to forward momentum was increased. The knee flexors underwent a phase of great energy absorption during the swing phase and this could increase the risk of injury to the hamstring muscles

    Kinematic characteristics of elite men's 50 km race walking.

    Get PDF
    Race walking is an endurance event which also requires great technical ability, particularly with respect to its two distinguishing rules. The 50 km race walk is the longest event in the athletics programme at the Olympic Games. The aims of this observational study were to identify the important kinematic variables in elite men's 50 km race walking, and to measure variation in those variables at different distances. Thirty men were analysed from video data recorded during a World Race Walking Cup competition. Video data were also recorded at four distances during the European Cup Race Walking and 12 men analysed from these data. Two camcorders (50 Hz) recorded at each race for 3D analysis. The results of this study showed that walking speed was associated with both step length (r=0.54,P=0.002) and cadence (r=0.58,P=0.001). While placing the foot further ahead of the body at heel strike was associated with greater step lengths (r=0.45,P=0.013), it was also negatively associated with cadence (r= -0.62,P<0.001). In the World Cup, knee angles ranged between 175 and 186° at initial contact and between 180 and 195° at midstance. During the European Cup, walking speed decreased significantly (F=9.35,P=0.002), mostly due to a decrease in step length between 38.5 and 48.5 km (t=8.59,P=0.014). From this study, it would appear that the key areas a 50 km race walker must develop and coordinate are step length and cadence, although it is also important to ensure legal walking technique is maintained with the onset of fatigue

    Photoresponse of PbS nanoparticles-quaterthiophene films prepared by gaseous deposition as probed by XPS

    Get PDF
    Cataloged from PDF version of article.Semiconducting lead sulfide (PbS) nanoparticles were cluster beam deposited into evaporated quaterthiophene (4T) organic films, which in some cases were additionally modified by simultaneous 50 eV acetylene ion bombardment. Surface chemistry of these nanocomposite films was first examined using standard x-ray photoelectron spectroscopy (XPS). XPS was also used to probe photoinduced shifts in peak binding energies upon illumination with a continuous wave green laser and the magnitudes of these peak shifts were interpreted as changes in relative photoconductivity. The four types of films examined all displayed photoconductivity: 4T only, 4T with acetylene ions, 4T with PbS nanoparticles, and 4T with both PbS nanoparticles and acetylene ions. Furthermore, the ion-modified films displayed higher photoconductivity, which was consistent with enhanced bonding within the 4T organic matrix and between 4T and PbS nanoparticles. PbS nanoparticles displayed higher photoconductivity than the 4T component, regardless of ion modification. (C) 2012 American Vacuum Society

    Decreased Epidermal Lipid Synthesis Accounts for Altered Barrier Function in Aged Mice

    Get PDF
    The epidermis of aged mice displays decreased stratum corneum (SC) lipid content and decreased extracellular bilayers, which result in impaired barrier recovery following the solvent treatment or tape stripping. We assessed the role of altered lipid synthesis as the cause of the abnormal barrier and lipid content in aged epidermis, both under basal conditions and in response to acute barrier perturbations. In aged epidermis (≥18months), synthesis of one of the three key lipid classes (cholesterol) is decreased under basal conditions, and sterologenesis fails to attain the levels reached in young epidermis following comparable acute perturbations. In contrast, fatty acid and sphingolipid synthesis in aged epidermis increase sufficiently to approach the levels attained in stimulated young epidermis. The abnormalities in sterologenesis in aged epidermis are paralleled by a decrease in activity of its rate-limiting enzyme, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, under basal conditions, and enzyme activity also fails to increase as much as in young epidermis after barrier disruption. That defective lipid generation contributes to the barrier defect is shown directly by the ability of either a cholesterol-containing mixture of SC lipids or cholesterol alone to enhance barrier recovery. Finally, lipid-induced acceleration of barrier recovery in aged epidermis correlates with repletion of the extracellular spaces with normal lamellar structures. Thus, a deficiency in lipid synthesis, particularly in cholesterologenesis, accounts for the barrier abnormality in aged epidermis
    • …
    corecore