9 research outputs found

    Short-lived Radio Bursts from the Crab Pulsar

    Full text link
    Our high-time-resolution observations reveal that individual main pulses from the Crab pulsar contain one or more short-lived microbursts. Both the energy and duration of bursts measured above 1 GHz can vary dramatically in less than a millisecond. These fluctuations are too rapid to be caused by propagation through turbulence in the Crab Nebula or the interstellar medium; they must be intrinsic to the radio emission process in the pulsar. The mean duration of a burst varies with frequency as ν−2\nu^{-2}, significantly different from the broadening caused by interstellar scattering. We compare the properties of the bursts to some simple models of microstructure in the radio emission region.Comment: 34 pages, 10 figures; accepted for publication in Ap

    Polarimetric Properties of the Crab Pulsar between 1.4 and 8.4 GHz

    Get PDF
    New polarimetric observations of the Crab pulsar at frequencies between 1.4 and 8.4 GHz are presented. Additional pulse components discovered in earlier observations (Moffett & Hankins 1996, astro-ph/9604163) are found to have high levels of linear polarization, even at 8.4 GHz. No abrupt sweeps in position angle are found within pulse components; however, the position angle and rotational phase of the interpulse do change dramatically between 1.4 and 4.9 GHz. The multi-frequency profile morphology and polarization properties indicate a non-standard origin of the emission. Several emission geometries are discussed, but the one favored locates sites of emission both near the pulsar surface and in the outer magnetosphere.Comment: 20 pages, 7 postscript figures, uses aaspp4 Latex style. To appear in Volume 522 of The Astrophysical Journa

    Coherent Dedispersion: History and Results

    No full text

    Operations research in global health: a scoping review with a focus on the themes of health equity and impact

    No full text
    corecore