7 research outputs found

    Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    Full text link
    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multi-domain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. The US ATLAS collaboration has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98635/1/1742-6596_396_4_042038.pd

    Suppressed lithium dendrite growth in lithium batteries using ionic liquid electrolytes: Investigation by electrochemical impedance spectroscopy, scanning electron microscopy, and in situ 7Li nuclear magnetic resonance spectroscopy

    No full text
    In this work, the formation of lithium dendrites in lithium/Li4Ti5O12 battery cells is studied using different experimental techniques. Electrochemical impedance spectroscopy is presented as a tool to investigate non-invasively the dendritic growth on a lithium metal surface in lithium/Li4Ti5O12 cells during numerous discharging/charging cycles. Scanning electron microscopy is used for visual inspection of the dendrite formation. In situ 7Li nuclear magnetic resonance spectroscopy is sensitive to quantitative changes at the lithium metal surface. Application to symmetrical lithium/lithium battery cells allows for a careful comparison of the investigated electrolytes. All these experimental methods provide consistent results. It is demonstrated that the growth of lithium dendrites is significantly correlated to the electrolyte employed. All electrolytes based on the ionic liquid 1-ethyl--methylimidazolium bis(trifluoromethane-sulfonyl)azanide (EMIM-TFSA) show reduced dendrite growth in comparison to the standard electrolyte for Li-ion batteries, lithium hexafluorophosphate (LiPF6) in ethylene carbonate/ dimethyl carbonate (EC/DMC). LiPF6 in EMIM-TFSA and LiPF6 in EMIM-TFSA/propylene carbonate suppress lithium dendrites most efficiently

    Verzeichnis der verwendeten Literatur

    No full text
    corecore