514 research outputs found
Why should we correct reported pulsation frequencies for stellar line-of-sight Doppler velocity shifts?
In the age of Kepler and Corot, extended observations have provided estimates
of stellar pulsation frequencies that have achieved new levels of precision,
regularly exceeding fractional levels of a few parts in . These high
levels of precision now in principle exceed the point where one can ignore the
Doppler shift of pulsation frequencies caused by the motion of a star relative
to the observer. We present a correction for these Doppler shifts and use
previously published pulsation frequencies to demonstrate the significance of
the effect. We suggest that reported pulsation frequencies should be routinely
corrected for stellar line-of-sight velocity Doppler shifts, or if a
line-of-sight velocity estimate is not available, the frame of reference in
which the frequencies are reported should be clearly stated.Comment: 5 pages, 1 figure, accepted for publication in MNRAS Letter
Super-Nyquist asteroseismology of solar-like oscillators with Kepler and K2 - expanding the asteroseismic cohort at the base of the red-giant branch
We consider the prospects for detecting solar-like oscillations in the
"super-Nyquist" regime of long-cadence (LC) Kepler photometry, i.e., above the
associated Nyquist frequency of approximately 283 {\mu}Hz. Targets of interest
are cool, evolved subgiants and stars lying at the base of the red-giant
branch. These stars would ordinarily be studied using the short-cadence (SC)
data, since the associated SC Nyquist frequency lies well above the frequencies
of the detectable oscillations. However, the number of available SC target
slots is quite limited. This imposes a severe restriction on the size of the
ensemble available for SC asteroseismic study.We find that archival Kepler LC
data from the nominal Mission may be utilized for asteroseismic studies of
targets whose dominant oscillation frequencies lie as high as approximately 500
{\mu}Hz, i.e., about 1.75- times the LC Nyquist frequency. The frequency
detection threshold for the shorter-duration science campaigns of the
re-purposed Kepler Mission, K2, is lower. The maximum threshold will probably
lie somewhere between approximately 400 and 450 {\mu}Hz. The potential to
exploit the archival Kepler and K2 LC data in this manner opens the door to
increasing significantly the number of subgiant and low-luminosity red-giant
targets amenable to asteroseismic analysis, overcoming target limitations
imposed by the small number of SC slots.We estimate that around 400 such
targets are now available for study in the Kepler LC archive. That number could
potentially be a lot higher for K2, since there will be a new target list for
each of its campaigns.Comment: Accepted for publication in MNRAS; 11 pages, 7 figures; reference
list update
NGC 6819: testing the asteroseismic mass scale, mass loss, and evidence for products of non-standard evolution
We present an extensive peakbagging effort on Kepler data of 50 red
giant stars in the open star cluster NGC 6819. By employing sophisticated
pre-processing of the time series and Markov Chain Monte Carlo techniques we
extracted individual frequencies, heights and linewidths for hundreds of
oscillation modes.
We show that the "average" asteroseismic parameter , derived
from these, can be used to distinguish the stellar evolutionary state between
the red giant branch (RGB) stars and red clump (RC) stars.
Masses and radii are estimated using asteroseismic scaling relations, both
empirically corrected to obtain self-consistency as well as agreement with
independent measures of distance, and using updated theoretical corrections.
Remarkable agreement is found, allowing the evolutionary state of the giants to
be determined exclusively from the empirical correction to the scaling
relations. We find a mean mass of the RGB stars and RC stars in NGC 6819 to be
and ,
respectively. The difference is
almost insensitive to systematics, suggesting very little RGB mass loss, if
any.
Stars that are outliers relative to the ensemble reveal overmassive members
that likely evolved via mass-transfer in a blue straggler phase. We suggest
that KIC 4937011, a low-mass Li-rich giant, is a cluster member in the RC phase
that experienced very high mass-loss during its evolution. Such over- and
undermassive stars need to be considered when studying field giants, since the
true age of such stars cannot be known and there is currently no way to
distinguish them from normal stars.Comment: 21 pages, 11 figure
Oscillation mode linewidths and heights of 23 main-sequence stars observed by Kepler
Solar-like oscillations have been observed by Kepler and CoRoT in many
solar-type stars, thereby providing a way to probe the stars using
asteroseismology. We provide the mode linewidths and mode heights of the
oscillations of various stars as a function of frequency and of effective
temperature. We used a time series of nearly two years of data for each star.
The 23 stars observed belong to the simple or F-like category. The power
spectra of the 23 main-sequence stars were analysed using both maximum
likelihood estimators and Bayesian estimators, providing individual mode
characteristics such as frequencies, linewidths, and mode heights. We study the
source of systematic errors in the mode linewidths and mode heights, and we
present a way to correct these errors with respect to a common reference fit.
Using the correction, we could explain all sources of systematic errors, which
could be reduced to less than 15% for mode linewidths and heights, and
less than 5% for amplitude, when compared to the reference fit. The effect
of a different estimated stellar background and a different estimated splitting
will provide frequency-dependent systematic errors that might affect the
comparison with theoretical mode linewidth and mode height, therefore affecting
the understanding of the physical nature of these parameters. All other sources
of relative systematic errors are less dependent upon frequency. We also
provide the dependence of the so-called linewidth dip, in the middle of the
observed frequency range, as a function of effective temperature. We show that
the depth of the dip decreases with increasing effective temperature. The
dependence of the dip on effective temperature may imply that the mixing length
parameter or the convective flux may increase with effective
temperature.Comment: Accepted by A&A, 38 pages, 35 figures, 26 table
Asteroseismology of the Hyades with K2: first detection of main-sequence solar-like oscillations in an open cluster
The Hyades open cluster was targeted during Campaign 4 (C4) of the NASA K2
mission, and short-cadence data were collected on a number of cool
main-sequence stars. Here, we report results on two F-type stars that show
detectable oscillations of a quality that allows asteroseismic analyses to be
performed. These are the first ever detections of solar-like oscillations in
main-sequence stars in an open cluster.Comment: 12 pages, 8 figures, 2 tables; accepted for publication in MNRA
Asteroseismic properties of solar-type stars observed with the NASA K2 mission: results from Campaigns 1-3 and prospects for future observations
We present an asteroseismic analysis of 33 solar-type stars observed in short
cadence during Campaigns (C) 1-3 of the NASA K2 mission. We were able to
extract both average seismic parameters and individual mode frequencies for
stars with dominant frequencies up to ~3300{\mu}Hz, and we find that data for
some targets are good enough to allow for a measurement of the rotational
splitting. Modelling of the extracted parameters is performed by using
grid-based methods using average parameters and individual frequencies together
with spectroscopic parameters. For the target selection in C3, stars were
chosen as in C1 and C2 to cover a wide range in parameter space to better
understand the performance and noise characteristics. For C3 we still detected
oscillations in 73% of the observed stars that we proposed. Future K2 campaigns
hold great promise for the study of nearby clusters and the chemical evolution
and age-metallicity relation of nearby field stars in the solar neighbourhood.
We expect oscillations to be detected in ~388 short-cadence targets if the K2
mission continues until C18, which will greatly complement the ~500 detections
of solar-like oscillations made for short-cadence targets during the nominal
Kepler mission. For ~30-40 of these, including several members of the Hyades
open cluster, we furthermore expect that inference from interferometry should
be possible.Comment: 17 pages, 15 figures, 4 tables; accepted for publication in PAS
Light-sheet microscopy for everyone? Experience of building an OpenSPIM to study flatworm development.
Background:
Selective plane illumination microscopy (SPIM a type of light-sheet microscopy) involves focusing a thin sheet of laser light through a specimen at right angles to the objective lens. As only the thin section of the specimen at the focal plane of the lens is illuminated, out of focus light is naturally absent and toxicity due to light (phototoxicity) is greatly reduced enabling longer term live imaging. OpenSPIM is an open access platform (Pitrone et al. 2013 and OpenSPIM.org) created to give new users step-by-step instructions on building a basic configuration of a SPIM microscope, which can in principle be adapted and upgraded to each laboratoryâs own requirements and budget. Here we describe our own experience with the process of designing, building, configuring and using an OpenSPIM for our research into the early development of the polyclad flatworm Maritigrella crozieri â a non-model animal.
Results:
Our OpenSPIM builds on the standard design with the addition of two colour laser illumination for simultaneous detection of two probes/molecules and dual sided illumination, which provides more even signal intensity across a specimen. Our OpenSPIM provides high resolution 3d images and time lapse recordings, and we demonstrate the use of two colour lasers and the benefits of two color dual-sided imaging. We used our microscope to study the development of the embryo of the polyclad flatworm M. crozieri. The capabilities of our microscope are demonstrated by our ability to record the stereotypical spiral cleavage pattern of M. crozieri with high-speed multi-view time lapse imaging. 3D and 4D (3Dâ+âtime) reconstruction of early development from these data is possible using image registration and deconvolution tools provided as part of the open source Fiji platform. We discuss our findings on the pros and cons of a self built microscope.
Conclusions:
We conclude that home-built microscopes, such as an OpenSPIM, together with the available open source software, such as MicroManager and Fiji, make SPIM accessible to anyone interested in having continuous access to their own light-sheet microscope. However, building an OpenSPIM is not without challenges and an open access microscope is a worthwhile, if significant, investment of time and money. Multi-view 4D microscopy is more challenging than we had expected. We hope that our experience gained during this project will help future OpenSPIM users with similar ambitions
Recommended from our members
Simple Integer Risk Score to Determine Prognosis of Patients With Hypertension and Chronic Stable Coronary Artery Disease
Background: It is difficult to accurately determine prognosis of patients with hypertension and chronic stable coronary artery disease (CAD). Our aim was to construct a risk score for predicting important adverse events in this population. Methods and Results: Patients with hypertension and chronic stable CAD enrolled in the INternational VErapamilâSR/Trandolapril STudy (INVEST) comprised the study cohort. Candidate predictor variables were obtained from patients with at least 1 postbaseline visit. Patients were divided into development (n=18 484) and validation cohorts (n=2054). Cox regression model identified predictors of the primary outcome: allâcause mortality, myocardial infarction, or stroke at a mean followâup of 2.3 years. The hazard ratio of each variable was rounded to the nearest integer to construct score weights. A score 0 to 4 defined lowârisk, 5 to 6 intermediateârisk and â„7 highârisk. The following variables were retained in the final model: age, residence, body mass index, onâtreatment heart rate and BP, prior myocardial infarction, heart failure, stroke/transient ischemic attack, smoking, diabetes, peripheral arterial disease, and chronic kidney disease. The primary outcome occurred in 2.9% of the lowârisk group, 6.5% of the intermediateârisk group, and 18.0% of the highârisk group (P for trend <0.0001). The model was good at discriminating those who had an event versus those who did not (Câstatistic=0.75). The model performed well in a validation cohort (Câstatistic=0.77). Conclusion: Readily available clinical variables can rapidly stratify patients with hypertension and chronic stable CAD into useful risk categories
- âŠ