603 research outputs found

    A High-Density Linkage Map of the Ancestral Diploid Strawberry, Fragaria iinumae, Constructed with Single Nucleotide Polymorphism Markers from the IStraw90 Array and Genotyping by Sequencing

    Get PDF
    Fragaria iinumae Makino is recognized as an ancestor of the octoploid strawberry species, which includes the cultivated strawberry, Fragaria ×ananassa Duchesne ex Rozier. Here we report the construction of the first high-density linkage map for F. iinumae. The F. iinumae linkage map (Fii map) is based on two high-throughput techniques of single nucleotide polymorphism (SNP) genotyping: the IStraw90 Array (hereafter “Array”), and genotyping by sequencing (GBS). The F2 generation mapping population was derived by selfing F. iinumae hybrid F1D, the product of a cross between two divergent F. iinumae accessions collected from Hokkaido, Japan. The Fii map consists of seven linkage groups (LGs) and has an overall length of 451.7 cM as defined by 496 loci populated by 4173 markers: 3280 from the Array and 893 from GBS. Comparisons with two versions of the Fragaria vesca ssp. vesca L. ‘Hawaii 4’ pseudo-chromosome (PC) assemblies reveal substantial conservation of synteny and colinearity, yet identified differences that point to possible genomic divergences between F. iinumae and F. vesca, and/or to F. vesca genomic assembly errors. The Fii map provides a basis for anchoring a F. iinumae genome assembly as a prerequisite for constructing a second diploid reference genome for Fragaria

    Implications of dealing with airborne substances and reactive oxygen species: what mammalian lungs, animals, and plants have to say?

    Get PDF
    A gas-exchange structure interacts with the environment and is constantly challenged by contaminants that may elicit defense responses, thus compromising its primary function. It is also exposed to high concentrations of O2 that can generate reactive oxygen species (ROS). Revisiting the lung of mammals, an integrative picture emerges, indicating that this bronchi-alveolar structure deals with inflammation in a special way, which minimizes compromising the gas-exchange role. Depending on the challenge, pro-inflammatory or antiinflammatory responses are elicited by conserved molecules, such as surfactant proteins A and D. An even broader picture points to the participation of airway sensors, responsive to inflammatory mediators, in a loop linking the immunological and nervous systems and expanding the role played by respiratory organs in functions other than gas-exchange. A byproduct of exposure to high concentration of O2 is the formation of superoxide (), hydrogen peroxide (H2O2), hydroxyl radical (HO•), and other ROS, which are known to be toxic to different types of cells, including the lung epithelium. A balance between antioxidants and oxidants exists; in pulmonary epithelial cells high intracellular and extracellular levels of antioxidants are found. Antioxidant adaptations related to plant and animal life-styles involve a broad range of overlapping strategies based on well-conserved molecules. Glutathione (GSH) is an abundant and ubiquitous thiol-tripeptide antioxidant, also present in lungs, whose role in providing information on the intracellular redox state of animals and plants is well established. In these organisms, GSH influences gene expression associated with stress, maximizing defense responses. Several enzymatic antioxidants, such as glutathione peroxidase (GPx), glutathione reductase, glutathione S-transferase, and glucose 6-phosphate dehydrogenase participate in the redox system; in animals that are stress-tolerant GPx is a key element against oxidative assaults. Most importantly, alternative roles of ROS as signaling molecules have been found in all plants and animals. For example, alveolar macrophages produce that act as second messengers, in addition to having a bactericidal role. The nonradical ROS H2O2 signals inflammation in mammalian lungs, apoptosis in different animal tissues, and is also involved in stomatal closure, root development, gene expression, and defense responses of plants. Antioxidant adaptations in some water-breathing animals involve the excretion of H2O2 by diffusion through gas-exchange structures. The fine balance among a multitude of factors and cells makes the difference between damage and protection in animals and plants. Knowledge about the mechanisms and consequences of these molecular interactions is now starting to be integrate

    The amyloid-β1-42-oligomer interacting peptide D-AIP possesses favorable biostability, pharmacokinetics, and brain region distribution.

    Get PDF
    We have previously developed a unique 8-amino acid Aβ42 oligomer-Interacting Peptide (AIP) as a novel anti-amyloid strategy for the treatment of Alzheimer's disease. Our lead candidate has successfully progressed from test tubes (i.e., in vitro characterization of protease-resistant D-AIP) to transgenic flies (i.e., in vivo rescue of human Aβ42-mediated toxicity via D-AIP-supplemented food). In the present study, we examined D-AIP in terms of its stability in multiple biological matrices (i.e., ex-vivo mouse plasma, whole blood, and liver S9 fractions) using MALDI mass spectrometry, pharmacokinetics using a rapid and sensitive LC-MS method, and blood brain barrier (BBB) penetrance in WT C57LB/6 mice. D-AIP was found to be relatively stable over 3 h at 37 °C in all matrices tested. Finally, label-free MALDI imaging showed that orally administered D-AIP can readily penetrate the intact BBB in both male and female WT mice. Based upon the favorable stability, pharmacokinetics, and BBB penetration outcomes for orally administered D-AIP in WT mice, we then examined the effect of D-AIP on amyloid "seeding" in vitro (i.e., freshly monomerized versus preaggregated Aβ42). Complementary biophysical assays (ThT, TEM, and MALDI-TOF MS) showed that D-AIP can directly interact with synthetic Aβ42 aggregates to disrupt primary and/or secondary seeding events. Taken together, the unique mechanistic and desired therapeutic potential of our lead D-AIP candidate warrants further investigation, that is, testing of D-AIP efficacy on the altered amyloid/tau pathology in transgenic mouse models of Alzheimer's disease

    Jetstream: A self-provisoned, scalable science and engineering cloud environment

    Get PDF
    The paper describes the motivation behind Jetstream, its functions, hardware configuration, software environment, user interface, design, use cases, relationships with other projects such as Wrangler and iPlant, and challenges in implementation.Funded by the National Science Foundation Award #ACI - 144560

    insights for ecological applications from the German Biodiversity Exploratories

    Get PDF
    Biodiversity, a multidimensional property of natural systems, is difficult to quantify partly because of the multitude of indices proposed for this purpose. Indices aim to describe general properties of communities that allow us to compare different regions, taxa, and trophic levels. Therefore, they are of fundamental importance for environmental monitoring and conservation, although there is no consensus about which indices are more appropriate and informative. We tested several common diversity indices in a range of simple to complex statistical analyses in order to determine whether some were better suited for certain analyses than others. We used data collected around the focal plant Plantago lanceolata on 60 temperate grassland plots embedded in an agricultural landscape to explore relationships between the common diversity indices of species richness (S), Shannon's diversity (H'), Simpson's diversity (D1), Simpson's dominance (D2), Simpson's evenness (E), and Berger–Parker dominance (BP). We calculated each of these indices for herbaceous plants, arbuscular mycorrhizal fungi, aboveground arthropods, belowground insect larvae, and P. lanceolata molecular and chemical diversity. Including these trait-based measures of diversity allowed us to test whether or not they behaved similarly to the better studied species diversity. We used path analysis to determine whether compound indices detected more relationships between diversities of different organisms and traits than more basic indices. In the path models, more paths were significant when using H', even though all models except that with E were equally reliable. This demonstrates that while common diversity indices may appear interchangeable in simple analyses, when considering complex interactions, the choice of index can profoundly alter the interpretation of results. Data mining in order to identify the index producing the most significant results should be avoided, but simultaneously considering analyses using multiple indices can provide greater insight into the interactions in a system

    Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations.

    Get PDF
    Asthma is a common disease with a complex risk architecture including both genetic and environmental factors. We performed a meta-analysis of North American genome-wide association studies of asthma in 5,416 individuals with asthma (cases) including individuals of European American, African American or African Caribbean, and Latino ancestry, with replication in an additional 12,649 individuals from the same ethnic groups. We identified five susceptibility loci. Four were at previously reported loci on 17q21, near IL1RL1, TSLP and IL33, but we report for the first time, to our knowledge, that these loci are associated with asthma risk in three ethnic groups. In addition, we identified a new asthma susceptibility locus at PYHIN1, with the association being specific to individuals of African descent (P = 3.9 × 10(-9)). These results suggest that some asthma susceptibility loci are robust to differences in ancestry when sufficiently large samples sizes are investigated, and that ancestry-specific associations also contribute to the complex genetic architecture of asthma

    Implications of dealing with airborne substances and reactive oxygen species: what mammalian lungs, animals and plants have to say?

    Get PDF
    A gas-exchange structure interacts with the environment and is constantly challenged by contaminants that may elicit defense responses, thus compromising its primary function. It is also exposed to high concentrations of O2 that can generate reactive oxygen species (ROS). Revisiting the lung of mammals, an integrative picture emerges, indicating that this bronchi-alveolar structure deals with inflammation in a special way, which minimizes compromising the gas-exchange role. Depending on the challenge, pro-inflammatory or antiinflammatory responses are elicited by conserved molecules, such as surfactant proteins A and D. An even broader picture points to the participation of airway sensors, responsive to inflammatory mediators, in a loop linking the immunological and nervous systems and expanding the role played by respiratory organs in functions other than gas-exchange. A byproduct of exposure to high concentration of O2 is the formation of superoxide (), hydrogen peroxide (H2O2), hydroxyl radical (HO•), and other ROS, which are known to be toxic to different types of cells, including the lung epithelium. A balance between antioxidants and oxidants exists; in pulmonary epithelial cells high intracellular and extracellular levels of antioxidants are found. Antioxidant adaptations related to plant and animal life-styles involve a broad range of overlapping strategies based on well-conserved molecules. Glutathione (GSH) is an abundant and ubiquitous thiol-tripeptide antioxidant, also present in lungs, whose role in providing information on the intracellular redox state of animals and plants is well established. In these organisms, GSH influences gene expression associated with stress, maximizing defense responses. Several enzymatic antioxidants, such as glutathione peroxidase (GPx), glutathione reductase, glutathione S-transferase, and glucose 6-phosphate dehydrogenase participate in the redox system; in animals that are stress-tolerant GPx is a key element against oxidative assaults. Most importantly, alternative roles of ROS as signaling molecules have been found in all plants and animals. For example, alveolar macrophages produce that act as second messengers, in addition to having a bactericidal role. The nonradical ROS H2O2 signals inflammation in mammalian lungs, apoptosis in different animal tissues, and is also involved in stomatal closure, root development, gene expression, and defense responses of plants. Antioxidant adaptations in some water-breathing animals involve the excretion of H2O2 by diffusion through gas-exchange structures. The fine balance among a multitude of factors and cells makes the difference between damage and protection in animals and plants. Knowledge about the mechanisms and consequences of these molecular interactions is now starting to be integrated

    Rights, Knowledge, and Governance for Improved Health Equity in Urban Settings

    Get PDF
    All three of the interacting aspects of daily urban life (physical environment, social conditions, and the added pressure of climate change) that affect health inequities are nested within the concept of urban governance, which has the task of understanding and managing the interactions among these different factors so that all three can be improved together and coherently. Governance is defined as: “the process of collective decision making and processes by which decisions are implemented or not implemented”: it is concerned with the distribution, exercise, and consequences of power. Although there appears to be general agreement that the quality of governance is important for development, much less agreement appears to exist on what the concept really implies and how it should be used. Our review of the literature confirmed significant variation in meaning as well as in the practice of urban governance arrangements. The review found that the linkage between governance practices and health equity is under-researched and/or has been neglected. Reconnecting the fields of urban planning, social sciences, and public health are essential “not only for improving local governance, but also for understanding and addressing global political change” for enhanced urban health equity. Social mobilization, empowering governance, and improved knowledge for sustainable and equitable development in urban settings is urgently needed. A set of strategic research questions are suggested

    Cytomegaloviral determinants of CD8+ T cell programming and RhCMV/SIV vaccine efficacy

    Get PDF
    Simian immunodeficiency virus (SIV) insert-expressing, 68–1 Rhesus Cytomegalovirus (RhCMV/SIV) vectors elicit major histocompatibility complex (MHC)-E- and -II-restricted, SIV-specific CD8(+) T cell responses, but the basis of these unconventional responses and their contribution to demonstrated vaccine efficacy against SIV challenge in the rhesus monkeys (RMs) has not been characterized. We show that these unconventional responses resulted from a chance genetic rearrangement in 68–1 RhCMV that abrogated the function of eight distinct immunomodulatory gene products encoded in two RhCMV genomic regions (Rh157.5/Rh157.4 and Rh158–161), revealing three patterns of unconventional response inhibition. Differential repair of these genes with either RhCMV-derived or orthologous human CMV (HCMV)-derived sequences (UL128/UL130; UL146/UL147) leads to either of two distinct CD8(+) T cell response types – MHC-Ia-restricted-only, or a mix of MHC-II- and MHC-Ia-restricted CD8(+) T cells. Response magnitude and functional differentiation are similar to RhCMV 68–1, but neither alternative response type mediated protection against SIV challenge. These findings implicate MHC-E-restricted CD8(+) T cell responses as mediators of anti-SIV efficacy and indicate that translation of RhCMV/SIV vector efficacy to humans will likely require deletion of all genes that inhibit these responses from the HCMV/HIV vector
    corecore