417 research outputs found
Pre-scission neutron multiplicity associated with the dynamical process in superheavy mass region
The fusion-fission process accompanied by neutron emission is studied in the
superheavy-mass region on the basis of the fluctuation-dissipation model
combined with a statistical model. The calculation of the trajectory or the
shape evolution in the deformation space of the nucleus with neutron emission
is performed. Each process (quasi-fission, fusion-fission, and deep
quasi-fission processes) has a characteristic travelling time from the point of
contact of colliding nuclei to the scission point. These dynamical aspects of
the whole process are discussed in terms of the pre-scission neutron
multiplicity, which depends on the time spent on each process. We have
presented the details of the characteristics of our model calculation in the
reactions Ca+Pb and Ca+Pu, and shown how the
structure of the distribution of pre-scission neutron multiplicity depends on
the incident energy.Comment: 19 pages, 12 figures, Accepted for publication in J. Phys.
Analysis of fusion-fission dynamics by pre-scission neutron emission in Ni+Pb
We analyzed the experimental data of the pre-scission neutron multiplicity in
connection with fission fragments in the reaction Ni+Pb at the
incident energy corresponding to the excitation energy of compound nucleus
=185.9 MeV, which was performed by D\'{e}MoN group. The relation between
the pre-scission neutron multiplicity and each reaction process having
different reaction time is investigated. In order to study the fusion-fission
process accompanied by neutron emission, the fluctuation-dissipation model
combined with a statistical model is employed. It is found that the
fusion-fission process and the quasi-fission process are clearly distinguished
in correlation with the pre-scission neutron multiplicity.Comment: 11 figure
Quasifission and fusion-fission in massive nuclei reactions. Comparison of reactions leading to the Z=120 element
The yields of evaporation residues, fusion-fission and quasifission fragments
in the Ca+Sm and O+W reactions are analyzed
in the framework of the combined theoretical method based on the dinuclear
system concept and advanced statistical model. The measured yields of
evaporation residues for the Ca+Sm reaction can be well
reproduced. The measured yields of fission fragments are decomposed into
contributions coming from fusion-fission, quasifission, and fast-fission. The
decrease in the measured yield of quasifission fragments in
Ca+Sm at the large collision energies and the lack of
quasifission fragments in the Ca+Sm reaction are explained by
the overlap in mass-angle distributions of the quasifission and fusion-fission
fragments. The investigation of the optimal conditions for the synthesis of the
new element =120 (=302) show that the Cr+Cm reaction is
preferable in comparison with the Fe+Pu and Ni+U
reactions because the excitation function of the evaporation residues of the
former reaction is some orders of magnitude larger than that for the last two
reactions.Comment: 27 pages, 12 figures, submitted to Phys. Rev.
Structure of 12Be: intruder d-wave strength at N=8
The breaking of the N=8 shell-model magic number in the 12Be ground state has
been determined to include significant occupancy of the intruder d-wave
orbital. This is in marked contrast with all other N=8 isotones, both more and
less exotic than 12Be. The occupancies of the 0 hbar omega neutron p1/2-orbital
and the 1 hbar omega, neutron d5/2 intruder orbital were deduced from a
measurement of neutron removal from a high-energy 12Be beam leading to bound
and unbound states in 11Be.Comment: 5 pages, 2 figure
Angular anisotropy of the fusion-fission and quasifission fragments
The anisotropy in the angular distribution of the fusion-fission and
quasifission fragments for the O+U, F+Pb and
S+Pb reactions is studied by analyzing the angular momentum
distributions of the dinuclear system and compound nucleus which are formed
after capture and complete fusion, respectively. The orientation angles of
axial symmetry axes of colliding nuclei to the beam direction are taken into
account for the calculation of the variance of the projection of the total spin
onto the fission axis. It is shown that the deviation of the experimental
angular anisotropy from the statistical model picture is connected with the
contribution of the quasifission fragments which is dominant in the
S+Pb reaction. Enhancement of anisotropy at low energies in the
O+U reaction is connected with quasifission of the dinuclear
system having low temperature and effective moment of inertia.Comment: 17 pages 8 figures. Submitted to Euro. Phys. Jour.
Structure of Be probed via secondary beam reactions
The low-lying level structure of the unbound neutron-rich nucleus Be
has been investigated via breakup on a carbon target of secondary beams of
B at 35 MeV/nucleon. The coincident detection of the beam velocity
Be fragments and neutrons permitted the invariant mass of the
Be+ and Be++ systems to be reconstructed. In the case of
the breakup of B, a very narrow structure at threshold was observed in
the Be+ channel. Contrary to earlier stable beam fragmentation
studies which identified this as a strongly interacting -wave virtual state
in Be, analysis here of the Be++ events demonstrated that
this was an artifact resulting from the sequential-decay of the
Be(2) state. Single-proton removal from B was found to
populate a broad low-lying structure some 0.70 MeV above the neutron-decay
threshold in addition to a less prominent feature at around 2.4 MeV. Based on
the selectivity of the reaction and a comparison with (0-3)
shell-model calculations, the low-lying structure is concluded to most probably
arise from closely spaced J=1/2 and 5/2 resonances
(E=0.400.03 and 0.85 MeV), whilst the broad
higher-lying feature is a second 5/2 level (E=2.350.14 MeV). Taken
in conjunction with earlier studies, it would appear that the lowest 1/2
and 1/2 levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical
Review
The detection of neutron clusters
A new approach to the production and detection of bound neutron clusters is
presented. The technique is based on the breakup of beams of very neutron-rich
nuclei and the subsequent detection of the recoiling proton in a liquid
scintillator. The method has been tested in the breakup of 11Li, 14Be and 15B
beams by a C target. Some 6 events were observed that exhibit the
characteristics of a multineutron cluster liberated in the breakup of 14Be,
most probably in the channel 10Be+4n. The various backgrounds that may mimic
such a signal are discussed in detail.Comment: 11 pages, 12 figures, LPCC 01-1
- …
