746 research outputs found

    Dynamic transitions and hysteresis

    Get PDF
    When an interacting many-body system, such as a magnet, is driven in time by an external perturbation, such as a magnetic field,the system cannot respond instantaneously due to relaxational delay. The response of such a system under a time-dependent field leads to many novel physical phenomena with intriguing physics and important technological applications. For oscillating fields, one obtains hysteresis that would not occur under quasistatic conditions in the presence of thermal fluctuations. Under some extreme conditions of the driving field, one can also obtain a non-zero average value of the variable undergoing such dynamic hysteresis. This non-zero value indicates a breaking of symmetry of the hysteresis loop, around the origin. Such a transition to the spontaneously broken symmetric phase occurs dynamically when the driving frequency of the field increases beyond its threshold value which depends on the field amplitude and the temperature. Similar dynamic transitions also occur for pulsed and stochastically varying fields. We present an overview of the ongoing researches in this not-so-old field of dynamic hysteresis and transitions.Comment: 30 Pages Revtex, 10 Postscript figures. To appear in Reviews of Modern Physics, April, 199

    Si/Ge hole-tunneling double-barrier resonant tunneling diodes formed on sputtered flat Ge layers

    No full text
    We have demonstrated Si/Ge hole-tunneling double-barrier resonant tunneling diodes (RTDs) formed on flat Ge layers with a relaxation rate of 89% by our proposed method; in this method, the flat Ge layers can be directly formed on highly B-doped Si(001) substrates using our proposed sputter epitaxy method. The RTDs exhibit clear negative differential resistance effects in the static current–voltage (I–V) curves at room temperature. The quantized energy level estimation suggests that resonance peaks that appeared in the I–V curves are attributed to hole tunneling through the first heavy- and light-hole energy levels

    Strain distribution analysis of sputter-formed strained Si by tip-enhanced Raman spectroscopy

    No full text
    Simultaneous nanometer-scale measurements of the strain and surface undulation distributions of strained Si (s-Si) layers on strain-relief quadruple-Si1-xGex-layer buffers, using a combined atomic force microscopy (AFM) and tip-enhanced Raman spectroscopy (TERS) system, clarify that an s-Si sample formed by our previously proposed sputter epitaxy method has a smoother and more uniformly strained surface than an s-Si sample formed by gas-source molecular beam epitaxy. The TERS analyses suggest that the compositional fluctuation of the underlying Si1-xGex buffer layer is largely related to the weak s-Si strain fluctuation of the sputtered sampl

    Differences in the Contribution of the CTLA4 Gene to Susceptibility to Fulminant and Type 1A Diabetes in Japanese Patients

    Get PDF
    OBJECTIVE—To examine the contribution of the CTLA4 gene in the susceptibility to fulminant type 1 diabetes and compare it with classic type 1A diabetes

    Targeted online liquid chromatography electron capture dissociation mass spectrometry for the localization of sites of in vivo phosphorylation in human Sprouty2

    Get PDF
    We demonstrate a strategy employing collision-induced dissociation for phosphopeptide discovery, followed by targeted electron capture dissociation (ECD) for site localization. The high mass accuracy and low background noise of the ECD mass spectra allow facile sequencing of coeluting isobaric phosphopeptides, with up to two isobaric phosphopeptides sequenced from a single mass spectrum. In contrast to the previously described neutral loss of dependent ECD method, targeted ECD allows analysis of both phosphotyrosine peptides and lower abundance phosphopeptides. The approach was applied to phosphorylation analysis of human Sprouty2, a regulator of receptor tyrosine kinase signaling. Fifteen sites of phosphorylation were identified, 11 of which are novel

    Sprouty2 mediated tuning of signalling is essential for somite myogenesis

    Get PDF
    Background: Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results: Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions: Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis

    Amylase α-2A Autoantibodies: Novel Marker of Autoimmune Pancreatitis and Fulminant Type 1 Diabetes

    Get PDF
    OBJECTIVE— The pathogenesis of autoimmune pancreatitis (AIP) and fulminant type 1 diabetes remains unclear, although it is known that immune-mediated processes severely compromise the endocrine and exocrine functions in both diseases

    In silico mining identifies IGFBP3 as a novel target of methylation in prostate cancer

    Get PDF
    Promoter hypermethylation is central in deregulating gene expression in cancer. Identification of novel methylation targets in specific cancers provides a basis for their use as biomarkers of disease occurrence and progression. We developed an in silico strategy to globally identify potential targets of promoter hypermethylation in prostate cancer by screening for 5′ CpG islands in 631 genes that were reported as downregulated in prostate cancer. A virtual archive of 338 potential targets of methylation was produced. One candidate, IGFBP3, was selected for investigation, along with glutathione-S-transferase pi (GSTP1), a well-known methylation target in prostate cancer. Methylation of IGFBP3 was detected by quantitative methylation-specific PCR in 49/79 primary prostate adenocarcinoma and 7/14 adjacent preinvasive high-grade prostatic intraepithelial neoplasia, but in only 5/37 benign prostatic hyperplasia (P<0.0001) and in 0/39 histologically normal adjacent prostate tissue, which implies that methylation of IGFBP3 may be involved in the early stages of prostate cancer development. Hypermethylation of IGFBP3 was only detected in samples that also demonstrated methylation of GSTP1 and was also correlated with Gleason score ⩾7 (P=0.01), indicating that it has potential as a prognostic marker. In addition, pharmacological demethylation induced strong expression of IGFBP3 in LNCaP prostate cancer cells. Our concept of a methylation candidate gene bank was successful in identifying a novel target of frequent hypermethylation in early-stage prostate cancer. Evaluation of further relevant genes could contribute towards a methylation signature of this disease
    corecore