6,207 research outputs found

    Tests of the Gravitational Inverse-Square Law

    Full text link
    We review recent experimental tests of the gravitational inverse-square law and the wide variety of theoretical considerations that suggest the law may break down in experimentally accessible regions.Comment: 81 pages, 10 figures, submitted by permission of the Annual Review of Nuclear and Particle Science. Final version of this material is scheduled to appear in the Annual Review of Nuclear and Particle Science Vol. 53, to be published in December 2003 by Annual Reviews, http://AnnualReviews.or

    Molecular Hydrodynamics: Vortex Formation and Sound Wave Propagation

    Full text link
    In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to or larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale

    Within-network ensemble for face attributes classification

    Get PDF
    Face attributes classification is drawing attention as a research topic with applications in multiple domains, such as video surveillance and social media analysis. In this work, we propose to train attributes in groups based on their localization (head, eyes, nose, cheek, mouth, shoulder, and general areas) in an end-to-end framework considering the correlations between the different attributes. Furthermore, a novel ensemble learning technique is introduced within the network itself that reduces the time of training compared to ensemble of several models. Our approach outperforms the state-of-the-art of the attributes with an average improvement of almost 0.60% and 0.48% points, on the public CELEBA and LFWA datasets, respectively

    PrIC3: Property Directed Reachability for MDPs

    Get PDF
    IC3 has been a leap forward in symbolic model checking. This paper proposes PrIC3 (pronounced pricy-three), a conservative extension of IC3 to symbolic model checking of MDPs. Our main focus is to develop the theory underlying PrIC3. Alongside, we present a first implementation of PrIC3 including the key ingredients from IC3 such as generalization, repushing, and propagation

    Accelerated Model Checking of Parametric Markov Chains

    Get PDF
    Parametric Markov chains occur quite naturally in various applications: they can be used for a conservative analysis of probabilistic systems (no matter how the parameter is chosen, the system works to specification); they can be used to find optimal settings for a parameter; they can be used to visualise the influence of system parameters; and they can be used to make it easy to adjust the analysis for the case that parameters change. Unfortunately, these advancements come at a cost: parametric model checking is---or rather was---often slow. To make the analysis of parametric Markov models scale, we need three ingredients: clever algorithms, the right data structure, and good engineering. Clever algorithms are often the main (or sole) selling point; and we face the trouble that this paper focuses on -- the latter ingredients to efficient model checking. Consequently, our easiest claim to fame is in the speed-up we have often realised when comparing to the state of the art

    Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study

    Get PDF
    Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood. Methods We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution. Results Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms). Conclusion Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve

    Uterine selection of human embryos at implantation

    Get PDF
    Human embryos frequently harbor large-scale complex chromosomal errors that impede normal development. Affected embryos may fail to implant although many first breach the endometrial epithelium and embed in the decidualizing stroma before being rejected via mechanisms that are poorly understood. Here we show that developmentally impaired human embryos elicit an endoplasmic stress response in human decidual cells. A stress response was also evident upon in vivo exposure of mouse uteri to culture medium conditioned by low-quality human embryos. By contrast, signals emanating from developmentally competent embryos activated a focused gene network enriched in metabolic enzymes and implantation factors. We further show that trypsin, a serine protease released by pre-implantation embryos, elicits Ca2+ signaling in endometrial epithelial cells. Competent human embryos triggered short-lived oscillatory Ca2+ fluxes whereas low-quality embryos caused a heightened and prolonged Ca2+ response. Thus, distinct positive and negative mechanisms contribute to active selection of human embryos at implantation

    Varicella-Zoster viruses associated with post-herpetic neuralgia induce sodium current density increases in the ND7-23 Nav-1.8 neuroblastoma cell line

    Get PDF
    Post-herpetic neuralgia (PHN) is the most significant complication of herpes zoster caused by reactivation of latent Varicella-Zoster virus (VZV). We undertook a heterologous infection in vitro study to determine whether PHN-associated VZV isolates induce changes in sodium ion channel currents known to be associated with neuropathic pain. Twenty VZV isolates were studied blind from 11 PHN and 9 non-PHN subjects. Viruses were propagated in the MeWo cell line from which cell-free virus was harvested and applied to the ND7/23-Nav1.8 rat DRG x mouse neuroblastoma hybrid cell line which showed constitutive expression of the exogenous Nav 1.8, and endogenous expression of Nav 1.6 and Nav 1.7 genes all encoding sodium ion channels the dysregulation of which is associated with a range of neuropathic pain syndromes. After 72 hrs all three classes of VZV gene transcripts were detected in the absence of infectious virus. Single cell sodium ion channel recording was performed after 72 hr by voltage-clamping. PHN-associated VZV significantly increased sodium current amplitude in the cell line when compared with non-PHN VZV, wild-type (Dumas) or vaccine VZV strains ((POka, Merck and GSK). These sodium current increases were unaffected by acyclovir pre-treatment but were abolished by exposure to Tetrodotoxin (TTX) which blocks the TTX-sensitive fast Nav 1.6 and Nav 1.7 channels but not the TTX-resistant slow Nav 1.8 channel. PHN-associated VZV sodium current increases were therefore mediated in part by the Nav 1.6 and Nav 1.7 sodium ion channels. An additional observation was a modest increase in message levels of both Nav1.6 and Nav1.7 mRNA but not Nav 1.8 in PHN virally infected cells

    Vectorlike Confinement at the LHC

    Full text link
    We argue for the plausibility of a broad class of vectorlike confining gauge theories at the TeV scale which interact with the Standard Model predominantly via gauge interactions. These theories have a rich phenomenology at the LHC if confinement occurs at the TeV scale, while ensuring negligible impact on precision electroweak and flavor observables. Spin-1 bound states can be resonantly produced via their mixing with Standard Model gauge bosons. The resonances promptly decay to pseudo-Goldstone bosons, some of which promptly decay to a pair of Standard Model gauge bosons, while others are charged and stable on collider time scales. The diverse set of final states with little background include multiple photons and leptons, missing energy, massive stable charged particles and the possibility of highly displaced vertices in dilepton, leptoquark or diquark decays. Among others, a novel experimental signature of resonance reconstruction out of massive stable charged particles is highlighted. Some of the long-lived states also constitute Dark Matter candidates.Comment: 33 pages, 6 figures. v4: expanded discussion of Z_2 symmetry for stability, one reference adde
    corecore