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Abstract. Parametric Markov chains occur quite naturally in various
applications: they can be used for a conservative analysis of probabilistic
systems (no matter how the parameter is chosen, the system works to
specification); they can be used to find optimal settings for a parameter;
they can be used to visualise the influence of system parameters; and
they can be used to make it easy to adjust the analysis for the case that
parameters change. Unfortunately, these advancements come at a cost:
parametric model checking is—or rather was—often slow. To make the
analysis of parametric Markov models scale, we need three ingredients:
clever algorithms, the right data structure, and good engineering. Clever
algorithms are often the main (or sole) selling point; and we face the
trouble that this paper focuses on – the latter ingredients to efficient
model checking. Consequently, our easiest claim to fame is in the speed-
up we have often realised when comparing to the state of the art.

1 Introduction

The analysis of parametric Markov models is a young and growing field of re-
search. As not only the research direction but also the term ‘parametric Markov
models’ is attractive, it has been used for various generalisations of traditional
Markov models. We use Markov chains, where the parameter is used to deter-
mine the probabilities and rewards, such that we can reason about the likelihood
of obtaining simple temporal properties like safety and reachability as well as
standard reward functions, such as long-run average.

What we do not intend to do in this paper is to use parameters to change
the size of the system or the shape of the Markov chain. (The latter can, of
course, be encoded by using parameters to assign a probability of 0 to an edge,
effectively removing it. This would, however, come at the cost of efficiency and
is not what we want to use the parameters for.)

Using parameters to describe the probabilities of transitions is not quite as
easy as it sounds: even when parameters appear in a simple way, like ‘p’ or
‘1− p’, the terms that represent the likelihood of obtaining a temporal property
or an expected reward can quickly become quite intricate. One ends up with
rational functions. We make a virtue of necessity by using this as a motivation
to allow for using rational functions of the occurring parameters to represent the
probabilities and payoffs.

http://arxiv.org/abs/1805.05672v3


To allow for an efficient analysis of such complex parametrised systems, we
have taken a look at different strategies for the evaluations of—parametric and
non-parametric—Markov chains, and considered their suitability for our pur-
poses. We found the stepwise elimination of vertices from a model to be the
most attractive approach to port.

Broadly speaking, this approach works like the transformation from finite
automata to regular expressions: a vertex is removed, and the new structure has
all successors of this state as—potentially new—successors of the predecessors of
this vertex. In the transformation from finite automata to regular expressions,
one changes the expressions on the edges, while we adjust the probabilities and,
if applicable, the rewards on the edges.

When using this approach with explicit probabilities and rewards, one ends
up with a Directed Acyclic Graph (DAG) structure in the evaluation. This DAG
structure has been exploited to reduce the cost of re-calculating the probabilities
for simple temporal properties or expected rewards, and it proves that it also
integrates nicely into our framework, where the probabilities and rewards are
provided as rational functions. In fact it integrates so naturally that it seems
surprising in hindsight that it has not been discovered earlier.

The natural connection occurs when choosing a similar data structure to
represent the rational functions that represent the probabilities and rewards. To
make full use of the DAG structure that comes with the elimination, we represent
these functions in the form of arithmetic circuits—which are essentially DAGs.
We have integrated the resulting representation organically in a small extension
of ePMC, and tested it on a range of case studies. We have obtained a speed-up
of a hefty factor of 20 to 120 when compared to storing functions in terms of
coprime numerator and denominator polynomials.

Related work. For (discrete-time) Markov chains (MCs), Daws [6] has de-
vised a language-theoretic approach to solve this problem. In this approach,
the transition probabilities are considered as letters of an alphabet. Thus, the
model can be viewed as a finite automaton. Then, based on the state elimination
method [22], a regular expression that describes the language of such an automa-
ton is calculated. In a post-processing step, this regular expression is recursively
evaluated, resulting in a rational function over the parameters of the model. One
of the authors has been involved in extending and tuning this method [16] so as
to operate with rational functions, which are stored as coprime numerator and
denominator polynomials rather than with regular expressions.

The process of computing a function that describes properties (like reachabil-
ity probabilities or long-run average rewards) that depend on model parameters
is often costly. However, once the function has been obtained, it can very effi-
ciently be evaluated for given parameter instantiations. Because of this, paramet-
ric model checking of Markov models has also attracted attention in the area of
runtime verification, where the acceptable time to obtain values is limited [3,11].

Other works in the area are centred around deciding the validity of boolean
formulas depending on the parameter range using SMT solvers or extending
these techniques to models that involve nondeterminism [7,14,5,27].
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Fig. 1: Simulating a biased dice by a biased coin.

As an example for a para-
metric model, consider Fig-
ure 1. Knuth and Yao [24]
have shown how a six-sided
dice can be simulated by re-
peatedly tossing a coin. The
idea is to build a Markov
chain with transition prob-
abilities of only 0.5 or 1.
Borrowing a model from the
PRISM website, we have ex-
tended this example to a bi-
ased dice, simulated by toss-
ing a biased coin. With prob-
ability x we see heads, while
with probability 1 − x we see
tails. This way, we move around in the Markov chain until we obtain a result.

Organisation of the paper. After formalising our setting in Section 2, we
describe how we exploit DAGs in the representation of rational functions, and
exploit them using synergies with the DAG-style state elimination technique, in
Section 3. We then describe how to expand this technique to determine long-run
average rewards in Section 4. In Section 5, we evaluate our approach on a range
of benchmarks, and discuss the results briefly in Section 6.

2 Preliminaries

2.1 Parametric Markov chains with state rewards

Let V = {v1, . . . , vn} denote a set of variables over R. A polynomial g over V is
a sum of monomials

g(v1, . . . , vn) =
∑

i1,...,in

ai1 , . . . ,in vi11 . . . vinn ,

where each ij ∈ N and each ai1 , . . . ,in ∈ R. A rational function f over a set of

variables V is a fraction f(v1, . . . , vn) = f1(v1,...,vn)
f2(v1,...,vn)

of two polynomials f1, f2
over V . We denote the set of rational functions from V to R by FV .

Definition 1. A parametric Markov chain (PMC) is a tuple D = (S, s,P, V ),
where S is a finite set of states, s is the initial state, V = {v1, . . . , vn} is a
finite set of parameters, and P is the probability matrix P : S × S → FV . A
path ω of a PMC D = (S, s,P, V ) is a non-empty finite, or infinite, sequence
s0, s1, s2, . . . where si ∈ S and P(si, si+1) > 0 for i > 0. We let Ω denote the
set of infinite paths. With Prs, we denote the parametric probability measure
over Ω assuming that we start in state s, with Pr = Prs. We use Exps, Exp to

3



Algorithm 1 Parametric Reachability Probability for PMCs

1: procedure StateElimination(D,B)
2: requires: A PMC D = (S , s,P, V ) and set of target states B ⊆ S , where

reachD(s, s) holds for all s ∈ S .
3: E ← S
4: while E 6= ∅ do
5: se ← choose(E)
6: E ← E \ {se}
7: for all s ∈ postD(se) do
8: P(se, s)← P(se, s)/(1−P(se, se))
9: end for

10: P(se, se)← 0
11: for all (s1, s2) ∈ preD(se)× postD(se) do
12: P(s1, s2)← P(s1, s2) +P(s1, se)P(se, s2)
13: end for

14: if se 6= s ∧ se /∈ B ∧ postD(se) 6= ∅ then
15: Eliminate(D, se) // remove se and incident transitions from D
16: end if

17: end while

18: return
∑

s∈B
P(s, s)

19: end procedure

denote according expectations. With X(D)s,i : Ω → S, X(D)s,i(s0, s1, . . .) = si
we denote the random variable expressing the state occupied at step i ≥ 0, and
let X(D)i = X(D)s,i.

Definition 2. Given a PMC D = (S, s,P, V ), the underlying graph of D is
given by GD = (S, E) where E = {(s, s′) | P(s, s′) > 0}. A bottom strongly
connected component (BSCC) is a set A ⊆ S such that in the underlying graph
each state s1 ∈ A can reach each state s2 ∈ A and there is no s3 ∈ S\A reachable
from s1.

Given a state s, we denote the set of all immediate predecessors and successors of
s in the underlying graph of D by preD(s) and postD(s), respectively, excluding
s itself. We write reachD(s, s′) if s′ is reachable from s in the underlying graph
of D.

Given a PMC D = (S, s,P, V ) we are interested in computing the function
that represents the probability of reaching some set of target states B ⊂ S.

Reach(D,B) = Pr [∃i ≥ 0.X(D)s,i ∈ B]

Our base algorithm to obtain this value is described in Algorithm 1. A state se ∈
S is selected, and then eliminated by considering each pair (s1, s2) ∈ preD(se)×
postD(se) and updating the existing probability P(s1, s2) by the probability of
reaching s2 from s1 via se. Heuristics to determine the order in which states are
chosen for elimination by the choose function are discussed in Section 5.5.

4



Definition 3. A parametric reward function for a PMC D = (S, s,P, V ) is a
function r : S → FV .

The reward function labels states in D with a rational function over V that
corresponds to the reward that is gained if that state is visited. Given a PMC
D = (S, s,P, V ) and a reward function r : S → FV , we are interested in the
parametric expected accumulated reward defined as

Acc(D, r) = Exp

[

∞
∑

i=0

r(X(D))s,i

]

or a variation [25], the parametric expected accumulated reachability reward given
B ⊆ S defined as

Acc(D, r,B) = Exp





{j|X(D)s,j∈B}
∑

i=0

r(X(D))s,i



 .

This can, however, be transformed to the former.
Algorithm 1 can be extended to compute the parametric expected accumu-

lated reward. In addition to updating the probability matrix for each predecessor
and successor pair, we also update the reward function as follows:

r(s1)← r(s1) + P(s1, se)
P(se, se)

1−P(se, se)
r(se).

The updated value for r(s1) reflects the reward that would be accumulated if a
transition would be taken from s1 to se, where the expected number of self-loops

would be P(se,se)
1−P(se,se)

. Upon termination, the algorithm returns the value r(s).

3 Representing Formulas using Directed Acyclic Graphs

In existing tools for parametric model checking of Markov models, rational func-

tions have traditionally been represented in the form f(v1, . . . , vn) = f1(v1,...,vn)
f2(v1,...,vn)

,

where f1(v1, . . . , vn) and f2(v1, . . . , vn) [15,8,26] are coprime. As a result, for
some cases the representations of such functions are very short. Often, during
the state elimination phase, large common factors can be cancelled out, such that
one can operate with relatively small functions throughout the whole algorithm.
There are, however, many cases without—or with very few—large common fac-
tors. The nominator-denominator representations then become larger and larger
during the analysis. In this case, the analysis is slowed down severely, mostly
by the time taken for the cancellation of common factors. Cancelling out such
factors is non-trivial, and indeed a research area in itself. In addition, if formulas
become large, this can also lead to out-of-memory problems.

To overcome this issue, we propose the representation of rational functions by
arithmetic circuits. These arithmetic circuits are directed acyclic graphs (DAG).

5



Terminal nodes are labelled with either a variable of the set of parameters V , or
with a rational number. Non-final nodes are labelled with a function to be applied
on the nodes it has edges to. In our setting, we require two unary functions,
additive inverse and multiplicative inverse, and two binary functions, addition
and multiplication. All functions used are represented using a single DAG, and
a function is represented by a reference to a node of this common DAG.

This representation has two advantages. Firstly, all operations are practically
constant time: to apply an operator on two functions, one simply introduces a
new node labelled with the according operator, with edges pointing to the two
nodes to connect. In particular, we do not have to use expensive methods to
cancel out common factors. Secondly, because we are using a DAG and not a
tree, common sub-expressions can be shared between different formulas, which
is not possible when representing rational functions in terms of two polynomials
represented as a list of monomials.

·

·

/

+

−

·

·

1x

−

+

Fig. 2: Probability of rolling .

For illustration, let us consider the exam-
ple from Figure 1. We analyse the probability
that the final result is . This probability can
be described by the function

−x2 + 2x− 1

x− 2
.

In our DAG-based representation, we would
represent the function as in Figure 2;

When operating with arithmetic circuits,
there are a number of ways to reduce their
memory footprint, which will, however, lead
to a higher running time. The simplest one is
that, while creating a new node to represent a
function, it might turn out that there already
exists a node with exactly the same operator,
and exactly the same operand. In this case, it
is better to drop the newly created node and
use a reference to the existing node to counter
the growth of the DAG. In case we use hash
maps for the lookup, we can also still keep
the overhead close to constant time. Another
optimisation is to use simple algebraic equiva-
lences. This includes computing the values of
constant functions. E.g. instead of creating a
node representing 2 + 3 we introduce a new
terminal node labelled 5, and if we are about the create a new node for y+x but
we already have a node for x + y we reuse this node instead. We also take the
additive and multiplicate neutral elements into account (rather than creating a
new node for 0 + x, we return the one for x, and the like). Another optimisa-
tion method is to evaluate functions of the DAG at random points and then to
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identify functions if the result of this evaluation is the same. Using the Schwartz-
Zippel Lemma [29,30,9], we can then bound the probability that we mistakenly
identify two nodes although they do not represent the same function. We can
again minimise the overheads incurred by this method by using hash maps.

Arithmetic circuits sometimes become very large, consisting of millions of
nodes. This way, they cannot serve as a concise, human-readable description
of the analysis result. Compared to performing a non-parametric analysis, it is
however often still beneficial to obtain a function representation in this form.
Even for large dags, obtaining evaluating parameter instantiations is very fast,
and linear in the number of DAG nodes. This is useful in particular if a large
number of points is required, for instance for plotting a graph. In this case,
results can be obtained much faster than using non-parametric model checking,
as demonstrated in Section 5. In particular, for any instantiation, values can
be obtained in the same, predictable, time. This is quite in contrast to value
iteration, where the number of iterations required to obtain a certain precision
varies with the concrete values of parameters.

For this reason, parametric model checking is particularly useful for online
model checking or runtime verification [3]. Here, one can precompute the DAG
before running the actual system, while concrete values can be instantiated at
runtime, with a running time that can be precisely calculated offline. Using
arithmetic circuits expands the range of systems for which this method is ap-
plicable. Evaluation of parameter instantiations can be performed using exact
arithmetic or floating-point arithmetic. From our experience, the quality of the
floating-point results using DAGs is often better than the one using the repre-
sentation of rational functions as coprime numerator and denominator, which
has been used so far in known implementations. The reason is that, in the latter
approach, one often runs into numerical problems such as cancellation, which
often forces the use of expensive exact arithmetic to be used for evaluation. The
DAG-based method seems to be more robust against such problems.

It has recently come noted by the verification community that the usual way
in which value iteration is implemented is not safe, and solutions have already
been proposed [1]. While this solves the problem, it requires more complex al-
gorithms and leads to increased model checking time. In case arithmetic circuits
are used, it is easy to obtain conservative upper and lower bounds for parameter
instantiations. One only has to use interval arithmetic and provide implementa-
tions for the basic operations used (addition, multiplication, additive and multi-
plicative inverse). The increase in the time to evaluate functions is small. In our
experiments, the largest interval diameter we have obtained is around 10−13.

4 Computation of Fractional Long-Run Average Values

Consider a PMC D = (S, s,P, V ) together with two reward functions ru : S →
FV and rl : S → FV . The problem we are interested in is computing the value

7



fractional long-run average reward [2,10]

LRA(D, ru, rl, s)=Exp

[

lim
n→∞

∑n

i=0 ru(X(D)s,i)
∑n

i=0 rl(X(D)s,i)

]

, LRA(D, ru, rl)=LRA(D, ru, rl, s).

In a simple case, rl(·) = 1, which means that we compute the long-run average
reward

Exp

[

lim
n→∞

1

n + 1

n
∑

i=0

ru(X(D)s,i)

]

,

where each step is assumed to take the same amount of time. Solution methods
for this property has been implemented (but to the best of our confidence, not
been published) for parametric models in PRISM and Storm. The fractional
long-run average reward is more general and allows to express values like the
average energy usage per task performed more easily. Given a reward structure
r : S → FV , we define the recurrence reward as

Return(D, r, s) = Exp





min{j|X(D)s,j=s∧j>0}
∑

i=0

r(X(D)s,i)



 ,Return(D, r) = Return(D, r, s).

It is known [4] that this value is the same for all states of a BSCC. Furthermore,
for rl(·) = 1 we have

Return(D, ru, s)

Return(D, rl, s)
= LRA(D, ru, rl, s),

which immediately extends to the general case.
In Section 2, we have discussed how state elimination can be used to obtain

values for the expected accumulated reward values. For this, we have repeatedly
eliminated states so as to bring the PMC of interest into a form in which reward
values can be obtained in a trivial way. It is easy to see that the transformations
for the expected accumulated rewards also maintains the recurrence rewards.
After having handled each state of our model, we have two possible outcomes.

· · ·

P = p1

P = pn

P = 1, ru = us, rl = ls

P = 1, ru = u1, rl = l1

P = 1, ru = un, rl = ln

Fig. 3: Computation of long-run average values.

In the simpler case, the re-
maining model consists of the
initial state s with a self-loop
with probability one and ru =
us, rl = ls. In this case, we
have LRA(D, ru, rl) = us

ls
. In

the other case, the remaining
model consists of the initial
state s which has a probabil-
ity of pi to move to one of the
other n remaining states si ,
i = 1, . . . , n, which all have a self-loop with probability one and ru(si) = ui,
rl(si) = li. In this case, we have LRA(D, ru, rl) =

∑

i=1,...,n pi
ui

li
.
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5 Experiments

We now consider four case studies that illustrate the efficiency and scalability
of our approach. Three models [21,23,28] are taken from the PRISM benchmark
suite1, and the last is taken from the authors’ work on synchronisation proto-
cols [12,13]. All experiments were conducted on a PC with an Intel Core i7-2600
(tm) processor at 3.4GHz, equipped with 16GB of RAM, and running Ubuntu
16.04. For each case study we compare the performance times obtained for model
analysis when using the parametric engine of the model checker ePMC [17]2, us-
ing either polynomial fractions or DAGs to represent the functions corresponding
to transition probabilities and state rewards. Basically, the DAG is implemented
as an array of 64-bit integers. Functions are represented as indices to this array.
4 bits describe the type of the node. For terminal nodes, the remaining bits
denote the parameter or number used. For non-terminal nodes, 2 × 30 bits are
used to refer to the operands within the DAG. We also compare our results to
those obtained using the parametric engine of PRISM [26], and the parametric
and sampling engines of Storm [8]3.

Given a parametric model, and a set of valuations for its parameters, we
are interested in the total time taken to check some property of interest for
every valuation for the parameters. Since our primary concern is the efficiency of
multiple evaluations of an existing model, we omit model construction times and
restrict our analysis to the total time taken for the evaluation of all parameter
valuations. For the parametric engines of ePMC, PRISM, and Storm, we record
the total time taken for both state elimination and the evaluation of the resulting
function for all parameter valuations. For the sampling engine of Storm, we
record the total time taken for value iteration, using default settings to determine
convergence. For Storm, we set the precision to 10−10 rather than the default
of 10−6. This had a very minor influence on the runtime, and allowed a better
comparison to ePMC, the results of which have a precision of < 10−13.

5.1 Crowds Protocol

The Crowds protocol [28] provides anonymity for a crowd consisting of N Inter-
net users, of whom M are dishonest, by hiding their communication via random
routing, where there are R different path reformulates. The model is a PMC
parametrised by B = M

M+N
, the probability that a member of the crowd is

untrustworthy, and P , the probability that a member sends a package to a ran-
domly selected receiver. With probability 1−P the packet is directly delivered to
the receiver. The property of interest is the probability that the untrustworthy
members observe the sender more than they observe others.

Table 1 shows the performance statistics for different values of N and R,
where each entry shows the total time taken to check all pairwise combinations of

1 http://www.prismmodelchecker.org/benchmarks/
2 http://iscasmc.ios.ac.cn/?p=1241, https://github.com/liyi-david/ePMC
3 http://www.stormchecker.org/
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N R States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

5 3 1198 2038 722 737 13 13 681 26

5 5 8653 14953 745 806 15 15 723 64

5 7 37291 65011 818 900 19 17 735 153

10 3 6563 15143 732 771 15 14 690 26

10 5 111294 261444 1146 910 23 16 712 63

10 7 990601 2351961 –T– –T– 103 42 737 159

15 3 19228 55948 761 825 16 16 703 26

15 5 592060 1754860 –T– –M– 42 28 709 64

15 7 8968096 26875216 –M– –M– –M– –M– 777 174

20 3 42318 148578 814 805 15 14 709 26

20 5 2061951 7374951 –M– –M– 108 90 720 67

Table 1: Performance statistics for crowds protocol.

0.2
0.4

0.6
0.8

0.5

0.5

1

P

B

0.2
0.4

0.6
0.8

0.5

0

0.5

1

pK

pL

Fig. 4: Upper crowds protocol (L). Bounded retransmission protocol (R).

values for B,P taken from 0.002, 0.004, . . . , 0.998. There is a substantial increase
in the performance of ePMC when using non-simplified DAGs (ePMC(D)), and
using DAGs (ePMC(DS)) simplified by evaluating random points (cf. Section 3),
instead of polynomial fractions (ePMC) to represent functions. Here, ePMC
clearly outperforms the parametric engines of both PRISM and Storm. In some
instances, ePMC turns out to be the fastest choice, while the sampling engine of
Storm proves to be faster for other instances. Processes that exceeded the time
limit of one hour are indicated by –T–, and processes that ran out of memory are
indicated by –M–. In Fig. 4 (left) we plot the results for N = 5 and R = 7.

5.2 Bounded Retransmission Protocol

The bounded retransmission protocol [21] divides a file, which is to be transmit-
ted, into N chunks. For each chunk, there are at most MAX retransmissions over
two lossy channels K and L that send data and acknowledgements, respectively.

10



N MAX States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

64 4 4139 5543 1029 1016 36 38 991 160

64 5 4972 6695 1145 1118 36 33 1021 188

256 4 16427 22055 –M– –M– 48 40 3332 403

256 5 19756 26663 –M– –M– 35 15 –T– 318

512 4 32811 44071 –M– –M– 29 19 –T– 491

512 5 39468 53287 –M– –M– 28 23 –T– 596

Table 2: Performance statistics for bounded retransmission protocol.

The model is a PMC parametrised by pK and pL, the reliability of the chan-
nels. We are interested in the probability that the sender reports an unsuccessful
transmission after more than 8 chunks have been sent successfully.

The performance statistics for different values of N and MAX are shown in
Table 2, where each entry shows the total time taken to check all pairwise com-
binations of values for pK, pL taken from 0.002, 0.004, . . . , 0.998. Here, ePMC
with DAGs again has the best performance: the running time remains approx-
imately constant when using this data structure, even for much larger problem
instances. In contrast, the running time for both engines of Storm scale linearly.
Both the parametric engines of PRISM and ePMC, with polynomial fraction
representation, run out of memory for all larger problem instances.

Figure 4 (right) plots the results obtained for N = 256 and MAX = 4. As we
see the probability of interest first increases with increasing channel reliability,
but then decreases again. The reason is that, on the one hand, if the channel
reliability is low, then we do not send many chunks successfully. On the other
hand, if the channel reliability is high, then it is unlikely that the transmission
will fail in the end.

5.3 Cyclic Polling Server

This cyclic server polling model [23] is a model of a network, described as a
continuous-time Markov chain. There are two parameters, µ and γ. The model
consists of one server and N clients. When a client is idle, then a new job arrives
at this client with a rate of µ/N . The server ‘polls’ the clients in a cyclic manner.
At each point of time, it observes a single client. If there is a job waiting for a
given client, the server servers its job (provided there is one) with a rate of µ.
When the client it observes is idle, then the server moves on to observe the next
client with a rate of γ. Even though our method targets discrete-time models,
we can handle this model by computing the embedded DTMC.

In this case study, we consider the probability that, in the long run, Station
1 is idle. That is, the expected limit average of the time that Station 1, or,
due to symmetry, any other station, is idle. We compute this long-run average
value using the method described in Section 4. Probabilities are displayed as a
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N States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

4 96 272 1166 888 14 14 953 50

5 240 800 –T– –T– 28 25 –T– 121

6 576 2208 3550 –T– 108 102 –T– 305

7 1344 5824 1399 –T– 759 736 –T– 801

8 3072 14848 1052 –T– –T– –T– –T– 1991

9 6912 36864 –T– –T– –M– –M– –T– –T–

Table 3: Performance statistics for cyclic polling server.
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Fig. 5: Cyclic polling server (L). Synchronisation model (R).

function of the parameters in Figure 5, and Table 3 shows how the various tools
perform on this benchmark. With increasing γ the likelihood that Station 1 is
idle increases: if we increase γ, then the server will more quickly find stations to
be served. As the long-run average idle time only depends on the rate between
µ and γ, the likelihood that Station 1 is idle falls with increasing µ.

For the current configuration, classic parametric model checking does not
seem to be advantageous. Using our DAG-based implementation, however, is
much more efficient than classic parametric model checking, but it is space con-
suming. With the chosen number of parameter instantiations, our method does
not quite compete with non-parametric model checking.

5.4 Oscillator Synchronisation

The models of [12,13] encode the behaviour of a population of N coupled nodes
in a network. Each node has a clock that progresses, cyclically, through a range of
discrete values 1, . . . , T . At the end of each clock cycle a node transmits a message
to other nodes in the network. Nodes that receive this message adjust their clocks
to more closely match those of the firing node. The model is a PMC, parametrised
by the likelihood ML that a firing message is lost in the communication medium.
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N T States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

4 6 218 508 280 304 6 4 6 20

4 7 351 822 302 399 7 4 6 28

4 8 535 1257 542 1520 9 5 13 37

5 6 449 1179 354 499 10 5 11 39

5 7 799 2094 1694 –T– 11 6 34 60

5 8 1333 3533 –T– –T– 17 8 137 90

6 6 841 2491 1070 –T– 12 7 48 74

6 7 1639 4820 –T– –T– 19 8 239 130

6 8 2971 8871 –T– –T– 33 10 2311 211

Table 4: Performance statistics for synchronisation model.

The property of interest is the expected power consumption of the network (in
Watt-hours) to reach a state, where the clocks of all nodes are synchronised.

Table 4 shows the results for different values of N and T , where each en-
try shows the total time taken to check all values of ML taken from 10−5, 2 ·
10−5, . . . , 1− 10−5.

Figure 5 (right) plots the results obtained for N = 6 and T = 8. For extremal
values of ML, the network is expected to use much more energy to synchronise,
because the expected time required for this to occur increases. Very high values
of ML result in nearly all firing messages being lost, and hence nodes cannot
communicate well enough to coordinate, while very low values of ML lead to
perpetually asynchronous states for the network, an artefact of the discreteness
of the clock values [12].

In this case study, the DAG-based method, in particular with random points
evaluation, performs best, followed by the sampling-based method of Storm. We
note that the time required for each value iteration is relatively high, while the
cost of evaluating a point for the DAG-based method is quite low. Therefore, the
advantage of our approach would have been even more pronounced, if we had
evaluated more instantiations in the experiments above. The method of choice
thus depends mostly on whether such a high number of instantiations is required.

We have performed value iteration with a (local) precision of 10−10 for Storm.
This does, however, not guarantee any global precision [1]. Obtaining guaran-
teed results using value iteration is relatively expensive while, as discussed in
Section 3, extending our approach to obtain conservative guarantees is relatively
simple—and inexpensive—to achieve by using basic interval arithmetic.

5.5 Heuristics

An important consideration when performing state elimination is the order, in
which different states are eliminated from the graph. Using different elimination
orders to evaluate the same model can result in functions, whose representations
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Model Elimination Heuristic

NumNew MinProd TargetBFS Random BFS ReverseBFS

Crowds (N=10,R=5) 19 103 5 14 22 6

BRP (N=512,MAX=5) 4 11 4 –M– 5 4

Cyclic (N=7) 7 9 8 8 8 8

Synch (N=6, T=8) 18 18 17 19 18 17

Table 5: Performance statistics for different heuristics.

(nominator-denominator or DAGs) vary greatly in size, and hence also in the
corresponding memory footprint and analysis time. Heuristics for efficient state
elimination have been studied in automata theory, to obtain shorter regular ex-
pressions from finite-state automata [19,18], and in graph theory, for efficient
peeling of a probabilistic network [20]. We employ the following heuristics, con-
sisting of both existing schemes taken from the literature, and novel schemes
that prove to be effective for some models.

– NumNew: each state is weighted by the number of new transitions that are
introduced to the model when that state is eliminated. That is, we consider
each predecessor-successor pair for that state, and add one to the weight
if the transition from the predecessor to the successor was not already de-
fined in the underlying graph before state elimination. States with the lowest
weight are eliminated first. The aim here is to minimise the total number of
transitions as elimination progresses.

– MinProd: similarly to NumNew, we consider each predecessor-successor pair.
However, one is added to the weight irrespective of whether that transition
already existed in the underlying graph. Again states with the lowest weight
are considered first.

– TargetBFS: states are eliminated in the order in which they are discovered
when conducting a breadth-first search backwards from the target states.

– Random: a state is selected uniformly at random for elimination from the set
of remaining states.

– BFS: states are eliminated in the order in which they are discovered when
conducting a breadth-first search from the initial state(s) of the model.

– ReverseBFS: similar to BFS, except states are eliminated in reverse order.

In Table 5, we compare the different heuristics described. We have applied
each of them for each considered model, and provide the time in seconds required
for medium-sized instances. As seen, it turns out that TargetBFS is in general a
good choice. In one case, however, NumNew turns out to be faster.

6 Conclusion and Future Work

We have implemented an approach for the evaluation of parametric Markov
chains that exploits the synergies of using DAGs in a state-elimination based
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analysis and using DAGs in an encoding of rational functions as arithmetic cir-
cuits. Our experimental evaluation suggests that these two approaches integrated
so seamlessly that they often provide a notable speedup. The nicest observation
is that this seems so natural in hindsight that it is almost more surprising that
this has not been attempted before than that it works so well. We therefore hope
to have discovered one of these simple and natural approaches that will stand
the test of time.

The next step in exploiting our approach could be an integration into ap-
plications. One of the applications we have in mind is to use it in the context
of parameter extraction, which we expect to work similar to Model extraction,
for online Model checking. The growing knowledge of the model can be used to
refine or adjust the parameters in this application. Our application can help to
provide the speed required to make the approach scale, and to keep the analysis
and, if required, the visualisation4 of the effect of the learnt parameters (and the
confidence area around them) efficient.

We also note that interval arithmetic could be used to evaluate boxes—
hyperrectangles [a1, b1]×· · · [an, bn] of parameter ranges—so as to obtain bounds
on the lower and upper values taken by any occurring function value in the box.
This approach could be used instead of using SMT solvers (as in [7,14]) to decide
PCTL properties. A similar approach to avoid using SMT solvers has been pro-
posed [27], which is however not based on computing a function depending on
the parameters but on value iteration. We assume that the DAG-based approach
will perform better when a high coverage of the parameter space is required.

It would also be straightforward to parallelise evaluation of points using
SIMD approaches such as GPGPU.
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