
PrIC3: Property Directed Reachability
for MDPs

Kevin Batz1(B) , Sebastian Junges2 , Benjamin Lucien Kaminski3 ,
Joost-Pieter Katoen1 , Christoph Matheja4 , and Philipp Schröer1

1 RWTH Aachen University, Aachen, Germany
kevin.batz@cs.rwth-aachen.de

2 University of California, Berkeley, USA
3 University College London, London, UK

4 ETH Zürich, Zürich, Switzerland

Abstract. IC3 has been a leap forward in symbolic model checking. This
paper proposes PrIC3 (pronounced pricy-three), a conservative exten-
sion of IC3 to symbolic model checking of MDPs. Our main focus is
to develop the theory underlying PrIC3. Alongside, we present a first
implementation of PrIC3 including the key ingredients from IC3 such as
generalization, repushing, and propagation.

1 Introduction

IC3. Also known as property-directed reachability (PDR) [23], IC3 [13] is a sym-
bolic approach for verifying finite transition systems (TSs) against safety prop-
erties like “bad states are unreachable”. It combines bounded model checking
(BMC) [12] and inductive invariant generation. Put shortly, IC3 either proves that
a set B of bad states is unreachable by finding a set of non-B states closed under
reachability—called an inductive invariant—or refutes reachability ofB by a coun-
terexample path reaching B. Rather than unrolling the transition relation (as in
BMC), IC3 attempts to incrementally strengthen the invariant “no state in B is
reachable” into an inductive one. In addition, it applies aggressive abstraction to
the explored state space, so-called generalization [36]. These aspects together with
the enormous advances in modern SAT solvers have led to IC3’s success. IC3 has
been extended [27,38] and adapted to software verification [19,44]. This paper
develops a quantitative IC3 framework for probabilistic models.

MDPs. Markov decision processes (MDPs) extend TSs with discrete probabilistic
choices. They are central in planning, AI as well as in modeling randomized dis-
tributed algorithms. A key question in verifying MDPs is quantitative reachability:
“is the (maximal) probability to reach B atmost λ? ”.Quantitative reachability [5,6]

This work has been supported by the ERC Advanced Grant 787914 (FRAPPANT),
NSF grants 1545126 (VeHICaL) and 1646208, the DARPA Assured Autonomy pro-
gram, Berkeley Deep Drive, and by Toyota under the iCyPhy center.
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12225, pp. 512–538, 2020.
https://doi.org/10.1007/978-3-030-53291-8_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53291-8_27&domain=pdf
http://orcid.org/0000-0001-8705-2564
http://orcid.org/0000-0003-0978-8466
http://orcid.org/0000-0001-5185-2324
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0001-9151-0441
http://orcid.org/0000-0002-4329-530X
https://doi.org/10.1007/978-3-030-53291-8_27

PrIC3: Property Directed Reachability for MDPs 513

reduces to solving linear programs (LPs). Various tools support MDP model check-
ing, e.g., Prism [43], Storm [22], modest [34], and EPMC [31]. The LPs are mostly
solved using (variants of) value iteration [8,28,35,51]. Symbolic BDD-based MDP
model checking originated two decades ago [4] and is rather successful.
Towards IC3 for MDPs. Despite the success of BDD-based symbolic methods
in tools like Prism, IC3 has not penetrated probabilistic model checking yet. The
success of IC3 and the importance of quantitative reachability in probabilistic
model checking raises the question whether and how IC3 can be adapted—not just
utilized—to reason about quantitative reachability in MDPs. This paper addresses
the challenges of answering this question. It extends IC3 in several dimensions to
overcome these hurdles, making PrIC3—to our knowledge—the first IC3 frame-
work for quantitative reachability in MDPs1. Notably, PrIC3 is conservative: For
a threshold λ = 0, PrIC3 solves the same qualitative problem and behaves (almost)
the same as standard IC3. Our main contribution is developing the theory under-
lying PrIC3, which is accompanied by a proof-of-concept implementation.

Challenge 1 (Leaving the Boolean domain). IC3 iteratively computes frames,
which are over-approximations of sets of states that can reach B in a bounded
number of steps. For MDPs, Boolean reachability becomes a quantitative reach-
ability probability. This requires a shift: frames become real-valued functions
rather than sets of states. Thus, there are infinitely many possible frames—even
for finite-state MDPs—just as for infinite-state software [19,44] and hybrid sys-
tems [54]. Additionally, whereas in TSs a state reachable within k steps remains
reachable on increasing k, the reachability probability in MDPs may increase.
This complicates ensuring termination of an IC3 algorithm for MDPs. �
Challenge 2 (Counterexamples �= single paths). For TSs, a single cycle-free path2

to B suffices to refute that “B is not reachable”. This is not true in the proba-
bilistic setting [32]. Instead, proving that the probability of reaching B exceeds
the threshold λ requires a set of possibly cyclic paths—e.g., represented as a
sub-MDP [15]—whose probability mass exceeds λ. Handling sets of paths as
counterexamples in the context of IC3 is new. �
Challenge 3 (Strengthening). This key IC3 technique intuitively turns a proof
obligation of type (i) “state s is unreachable from the initial state sI ” into
type (ii) “s’s predecessors are unreachable from sI ”. A first issue is that in the
quantitative setting, the standard characterization of reachability probabilities
in MDPs (the Bellman equations) inherently reverses the direction of reasoning
(cf. “reverse” IC3 [53]): Hence, strengthening turns (i) “s cannot reach B” into
(ii) “s’s successors cannot reach B”.

A much more challenging issue, however, is that in the quantitative setting
obligations of type (i) read “s is reachable with at most probability δ”. However,

1 Recently, (standard) IC3 for TSs was utilized in model checking Markov chains [49] to
on-the-fly compute the states that cannot reach B.

2 In [38], tree-like counterexamples are used for non-linear predicate transformers in
IC3.

514 K. Batz et al.

the strengthened type (ii) obligation must then read: “the weighted sum over
the reachability probabilities of the successors of s is at most δ”. In general,
there are infinitely many possible choices of subobligations for the successors of
s in order to satisfy the original obligation, because—grossly simplified—there
are infinitely many possibilities for a and b to satisfy weighted sums such as
1
3a + 2

3b ≤ δ. While we only need one choice of subobligations, picking a good
one is approximately as hard as solving the entire problem altogether. We hence
require a heuristic, which is guided by a user-provided oracle. �
Challenge 4 (Generalization). “One of the key components of IC3 is [inductive]
generalization” [13]. Generalization [36] abstracts single states. It makes IC3
scale, but is not essential for correctness. To facilitate generalization, systems
should be encoded symbolically, i.e., integer-valued program variables describe
states. Frames thus map variables to probabilities. A first aspect is how to effec-
tively present them to an SMT-solver. Conceptually, we use uninterpreted func-
tions and universal quantifiers (encoding program behavior) together with linear
real arithmetic to encode the weighted sums occurring when reasoning about
probabilities. A second aspect is more fundamental: Abstractly, IC3’s general-
ization guesses an unreachable set of states. We, however, need to guess this set
and a probability for each state. To be effective, these guesses should moreover
eventually yield an inductive frame, which is often highly nonlinear. We propose
three SMT-guided interpolation variants for guessing these maps. �

Structure of this Paper. We develop PrIC3 gradually: We explain the underlying
rationale in Sect. 3. We also describe the core of PrIC3—called PrIC3H—which
resembles closely the main loop of standard IC3, but uses adapted frames and ter-
mination criteria (Challenge 1). In line with Challenge 3, PrIC3H is parameterized
by a heuristic H which is applied whenever we need to select one out of infinitely
many probabilities. No requirements on the quality of H are imposed. PrIC3H is
sound and always terminates: If it returns true, then the maximal reachability
probability is bounded by λ. Without additional assumptions about H, PrIC3H
is incomplete: on returning false, it is unknown whether the returned sub-
MDP is indeed a counterexample (Challenge 2). Section 4 details strengthening
(Challenge 3). Section 5 presents a sound and complete algorithm PrIC3 on top
of PrIC3H. Section 6 presents a prototype, discusses our chosen heuristics, and
addresses Challenge 4. Section 7 shows some encouraging experiments, but also
illustrates need for further progress.

Related Work. Just like IC3 has been a symbiosis of different approaches,
PrIC3 has been inspired by several existing techniques from the verification of
probabilistic systems.

BMC. Adaptions of BMC to Markov chains (MCs) with a dedicated treatment
of cycles have been pursued in [57]. The encoding in [24] annotates sub-formulae
with probabilities. The integrated SAT solving process implicitly unrolls all paths
leading to an exponential blow-up. In [52], this is circumvented by grouping
paths, discretizing them, and using an encoding with quantifiers and bit-vectors,

PrIC3: Property Directed Reachability for MDPs 515

but without numerical values. Recently, [56] extends this idea to a PAC algorithm
by purely propositional encodings and (approximate) model counting [17]. These
approaches focus on MCs and are not mature yet.

Invariant Synthesis. Quantitative loop invariants are key in analyzing proba-
bilistic programs whose operational semantics are (possibly infinite) MDPs [26].
A quantitative invariant I maps states to probabilities. I is shown to be an
invariant by comparing I to the result of applying the MDP’s Bellman operator
to I. Existing approaches for invariant synthesis are, e.g., based on weakest pre-
expectations [33,39,40,42,46], template-based constraint solving [25], notions of
martingales [3,9,16,55], and solving recurrence relations [10]. All but the last
technique require user guidance.

Abstraction. To combat state-space explosion, abstraction is often employed.
CEGAR for MDPs [37] deals with explicit sets of paths as counterexamples.
Game-based abstraction [30,41] and partial exploration [14] exploit that not all
paths have to be explored to prove bounds on reachability probabilities.

Statistical Methods and (deep) Reinforcement Learning. Finally, an avenue that
avoids storing a (complete) model are simulation-based approaches (statistical
model checking [2]) and variants of reinforcement learning, possibly with neural
networks. For MDPs, these approaches yield weak statistical guarantees [20], but
may provide good oracles.

2 Problem Statement

Our aim is to prove that the maximal probability of reaching a set B of bad
states from the initial state sI of a Markov decision process M is at most some
threshold λ. Below, we give a formal description of our problem. We refer to [7,50]
for a thorough introduction.

Definition 1 (MDPs). A Markov decision process (MDP) is a tuple M =
(S, sI , Act, P), where S is a finite set of states, sI ∈ S is the initial state, Act
is a finite set of actions, and P : S × Act × S → [0, 1] is a transition proba-
bility function. For state s, let Act (s) = {a ∈ Act | ∃s′ ∈ S : P (s, a, s′) > 0}
be the enabled actions at s. For all states s ∈ S, we require |Act (s) | ≥ 1 and∑

s′∈S P (s, a, s′) = 1. �
For this paper, we fix an MDP M = (S, sI , Act, P), a set of bad states B ⊆ S,
and a threshold λ ∈ [0, 1]. The maximal3 (unbounded) reachability probability
to eventually reach a state in B from a state s is denoted by Prmax (s |= ♦B).
We characterize Prmax (s |= ♦B) using the so-called Bellman operator. Let MN

denote the set of functions from N to M . Anticipating IC3 terminology, we call
a function F ∈ [0, 1]S a frame. We denote by F [s] the evaluation of frame F for
state s.
3 Maximal with respect to all possible resolutions of nondeterminism in the MDP.

516 K. Batz et al.

Definition 2 (Bellman Operator). For a set of actions A ⊆ Act, we define
the Bellman operator for A as a frame transformer ΦA : [0, 1]S → [0, 1]S with

ΦA (F) [s] =

⎧
⎨

⎩

1, if s ∈ B

max
a∈A

∑

s′∈S

P (s, a, s′) · F [s′] , if s /∈ B .

We write Φa for Φ{a}, Φ for ΦAct, and call Φ simply the Bellman operator. �
For every state s, the maximal reachability probability Prmax (s |= ♦B) is then
given by the least fixed point of the Bellman operator Φ. That is,

∀ s : Prmax (s |= ♦B) =
(
lfp Φ

)
[s] ,

where the underlying partial order on frames is a complete lattice with ordering

F1 ≤ F2 iff ∀ s ∈ S : F1[s] ≤ F2[s] .

In terms of the Bellman operator, our formal problem statement reads as follows:

Given an MDP M with initial state sI , a set B of bad states, and a threshold
λ ∈ [0, 1],

prove or refute that Prmax (sI |= ♦B) =
(
lfp Φ

)
[sI] ≤ λ .

Whenever Prmax (sI |= ♦B) ≤ λ indeed holds, we say that the MDP M is safe
(with respect to the set of bad states B and threshold λ); otherwise, we call it
unsafe.

Fig. 1. The MDP M serving as a running example.

Recovery Statement 1. For λ = 0, our problem statement is equivalent to
the qualitative reachability problem solved by (reverse) standard IC3, i.e, prove
or refute that all bad states in B are unreachable from the initial state sI .

Example 1. The MDP M in Fig. 1 consists of 6 states with initial state s0 and
bad states B = {s5}. In s2, actions a and b are enabled; in all other states, one
unlabeled action is enabled. We have Prmax (s0 |= ♦B) = 2/3. Hence, M is safe
for all thresholds λ ≥ 2/3 and unsafe for λ < 2/3. In particular, M is unsafe for
λ = 0 as s5 is reachable from s0. �

PrIC3: Property Directed Reachability for MDPs 517

3 The Core PrIC3 Algorithm

The purpose of PrIC3 is to prove or refute that the maximal probability to reach
a bad state in B from the initial state sI of the MDP M is at most λ. In this
section, we explain the rationale underlying PrIC3. Moreover, we describe the
core of PrIC3—called PrIC3H—which bears close resemblance to the main loop
of standard IC3 for TSs.

Because of the inherent direction of the Bellman operator, we build PrIC3
on reverse IC3 [53], cf. Challenge 3. Reversing constitutes a shift from rea-
soning along the direction initial-to-bad to bad-to-initial. While this shift is
mostly inessential to the fundamentals underlying IC3, the reverse direction
is unswayable in the probabilistic setting. Whenever we draw a connection to
standard IC3, we thus generally mean reverse IC3.

3.1 Inductive Frames

IC3 for TSs operates on (qualitative) frames representing sets of states of the TS
at hand. A frame F can hence be thought of as a mapping4 from states to {0, 1}.
In PrIC3 for MDPs, we need to move from a Boolean to a quantitative regime.
Hence, a (quantitative) frame is a mapping from states to probabilities in [0, 1].

For a given TS, consider the frame transformer T that adds to a given input
frame F ′ all bad states in B and all predecessors of the states contained in F ′.
The rationale of standard (reverse) IC3 is to find a frame F ∈ {0, 1}S such that
(i) the initial state sI does not belong to F and (ii) applying T takes us down
in the partial order on frames, i.e.,

(i) F [sI] = 0 and (ii) T (F) ≤ F .

Intuitively, (i) postulates the hypothesis that sI cannot reach B and (ii) expresses
that F is closed under adding bad states and taking predecessors, thus affirming
the hypothesis.

Analogously, the rationale of PrIC3 is to find a frame F ∈ [0, 1]S such that
(i) F postulates that the probability of sI to reach B is at most the threshold
λ and (ii) applying the Bellman operator Φ to F takes us down in the partial
order on frames, i.e.,

(i) F [sI] ≤ λ and (ii) Φ(F) ≤ F .

Frames satisfying the above conditions are called inductive invariants in IC3. We
adopt this terminology. By Park’s Lemma [48], which in our setting reads

Φ(F) ≤ F implies lfp Φ ≤ F ,

4 In IC3, frames are typically characterized by logical formulae. To understand IC3’s
fundamental principle, however, we prefer to think of frames as functions in {0, 1}S

partially ordered by ≤.

518 K. Batz et al.

an inductive invariant F would indeed witness that Prmax (sI |= ♦B) ≤ λ,
because

Prmax (sI |= ♦B) =
(
lfp Φ

)
[sI] ≤ F [sI] ≤ λ .

If no inductive invariant exists, then standard IC3 will find a counterexample:
a path from the initial state sI to a bad state in B, which serves as a witness
to refute. Analogously, PrIC3 will find a counterexample, but of a different kind:
Since single paths are insufficient as counterexamples in the probabilistic realm
(Challenge 2), PrIC3 will instead find a subsystem of states of the MDP witnessing
Prmax (sI |= ♦B) > λ.

3.2 The PrIC3 Invariants

Analogously to standard IC3, PrIC3 aims to find the inductive invariant by main-
taining a sequence of frames F0 ≤ F1 ≤ F2 ≤ . . . such that Fi[s] overapprox-
imates the maximal probability of reaching B from s within at most i steps.
This i-step-bounded reachability probability Prmax (

s |= ♦≤iB
)

can be character-
ized using the Bellman operator: Φ(0) is the 0-step probability; it is 1 for every
s ∈ B and 0 otherwise. For any i ≥ 0, we have

Prmax (
s |= ♦≤iB

)
=

(
Φi

(
Φ(0)

))
[s] =

(
Φi+1 (0)

)
[s] ,

where 0, the frame that maps every state to 0, is the least frame of the underlying
complete lattice. For a finite MDP, the unbounded reachability probability is then
given by the limit

Prmax (s |= ♦B) =
(
lfp Φ

)
[s]

(∗)
=

(
lim

n→∞
Φn (0)

)
[s] = lim

n→∞
Prmax

(
s |= ♦≤nB

)
,

where (∗) is a consequence of the well-known Kleene fixed point theorem [45].
The sequence F0 ≤ F1 ≤ F2 ≤ . . . maintained by PrIC3 should frame-wise

overapproximate the increasing sequence Φ(0) ≤ Φ2 (0) ≤ Φ3 (0) Pictorially:

F0 ≤ F1 ≤ F2 ≤ . . . ≤ Fk

≤ ≤ ≤ ≤

0 ≤ Φ (0) ≤ Φ2 (0) ≤ Φ3 (0) ≤ . . . ≤ Φk+1 (0)

However, the sequence Φ(0) , Φ2 (0) , Φ3 (0) , . . . will never explicitly be
known to PrIC3. Instead, PrIC3 will ensure the above frame-wise overapprox-
imation property implicitly by enforcing the so-called PrIC3 invariants on the
frame sequence F0, F1, F2, Apart from allowing for a threshold 0 ≤ λ ≤ 1 on
the maximal reachability probability, these invariants coincide with the standard
IC3 invariants (where λ = 0 is fixed). Formally:

PrIC3: Property Directed Reachability for MDPs 519

Definition 3 (PrIC3 Invariants). Frames F0, . . . , Fk, for k ≥ 0, satisfy the
PrIC3 invariants, a fact we will denote by PrIC3Inv (F0, . . . , Fk), if all of the
following hold:

1. Initiality : F0 = Φ(0)
2. Chain Property : ∀ 0 ≤ i < k : Fi ≤ Fi+1

3. Frame-safety : ∀ 0 ≤ i ≤ k : Fi[sI] ≤ λ
4. Relative Inductivity : ∀ 0 ≤ i < k : Φ (Fi) ≤ Fi+1 �

The PrIC3 invariants enforce the above picture: The chain property ensures F0 ≤
F1 ≤ . . . ≤ Fk. We have Φ(0) = F0 ≤ F0 by initiality. Assuming Φi+1 (0) ≤
Fi as induction hypothesis, monotonicity of Φ and relative inductivity imply
Φi+2 (0) ≤ Φ(Fi) ≤ Fi+1.

By overapproximating Φ(0) , Φ2 (0) , . . . , Φk+1 (0), the frames F0, . . . , Fk in
effect bound the maximal step-bounded reachability probability of every state:

Lemma 1. Let frames F0, . . . , Fk satisfy the PrIC3 invariants. Then

∀ s ∀ i ≤ k : Prmax (
s |= ♦≤iB

) ≤ Fi[s].

In particular, Lemma1 together with frame-safety ensures that the maximal
step-bounded reachability probability of the initial state sI to reach B is at
most the threshold λ.

As for proving that the unbounded reachability probability is also at most λ,
it suffices to find two consecutive frames, say Fi and Fi+1, that coincide:

Lemma 2. Let frames F0, . . . , Fk satisfy the PrIC3 invariants. Then

∃ i < k : Fi = Fi+1 implies Prmax (sI |= ♦B) ≤ λ .

Proof. Fi = Fi+1 and relative inductivity yield Φ(Fi) ≤ Fi+1 = Fi, rendering
Fi inductive. By Park’s lemma (cf. Sect. 3.1), we obtain lfp Φ ≤ Fi and—by
frame-safety—conclude

Prmax (sI |= ♦B) =
(
lfp Φ

)
[sI] ≤ Fi[sI] ≤ λ . �

3.3 Operationalizing the PrIC3 Invariants for Proving Safety

Lemma 2 gives us a clear angle of attack for proving an MDP safe: Repeatedly
add and refine frames approximating step-bounded reachability probabilities for
more and more steps while enforcing the PrIC3 invariants (cf. Definition 3.2) until
two consecutive frames coincide.

Analogously to standard IC3, this approach is taken by the core loop PrIC3H
depicted in Algorithm 1; differences to the main loop of IC3 (cf. [23, Fig. 5])
are highlighted in red. A particular difference is that PrIC3H is parameterized
by a heuristic H for finding suitable probabilities (see Challenge 3). Since the
precise choice of H is irrelevant for the soundness of PrIC3H, we defer a detailed
discussion of suitable heuristics to Sect. 4.

520 K. Batz et al.

Data: MDP M, set of bad states B, threshold λ
Result: true or false and a subset of the states of M

1 F0 ← Φ (0); F1 ← 1; k ← 1; oldSubsystem ← ∅;
2 while true do
3 success, F0, . . . , Fk, subsystem ← StrengthenH (F0, . . . , Fk);
4 if ¬success then returnfalse, subsystem;
5 Fk+1 ← 1;
6 F0, . . . , Fk+1 ← Propagate (F0, . . . , Fk+1);
7 if ∃ 1 ≤ i ≤ k : Fi = Fi+1 then returntrue, ;
8 if oldSubsystem = subsystem then returnfalse, subsystem;
9 k ← k + 1; oldSubsystem ← subsystem;

10 end
Algorithm 1: PrIC3H (M, B, λ)

As input, PrIC3H takes an MDP M = (S, sI , Act, P), a set B ⊆ S of bad
states, and a threshold λ ∈ [0, 1]. Since the input is never changed, we assume
it to be globally available, also to subroutines. As output, PrIC3H returns true
if two consecutive frames become equal. We hence say that PrIC3H is sound if
it only returns true if M is safe.

We will formalize soundness using Hoare triples. For precondition φ, postcon-
dition ψ, and program P , the triple

{
φ

}
P

{
ψ

}
is valid (for partial correctness)

if, whenever program P starts in a state satisfying precondition φ and termi-
nates in some state s′, then s′ satisfies postcondition ψ. Soundness of PrIC3H
then means validity of the triple

{
true

}
safe, ← PrIC3H (M, B, λ)

{
safe ⇒ Prmax (sI |= ♦B) ≤ λ

}
.

Let us briefly go through the individual steps of PrIC3H in Algorithm 1 and
convince ourselves that it is indeed sound. After that, we discuss why PrIC3H
terminates and what happens if it is unable to prove safety by finding two equal
consecutive frames.

How PrIC3H works. Recall that PrIC3H maintains a sequence of frames
F0, . . . , Fk which is initialized in l. 1 with k = 1, F0 = Φ(0), and F1 = 1, where
the frame 1 maps every state to 1. Every time upon entering the while-loop in
terms l. 2, the initial segment F0, . . . , Fk−1 satisfies all PrIC3 invariants (cf. Def-
inition 3), whereas the full sequence F0, . . . , Fk potentially violates frame-safety
as it is possible that Fk[sI] > λ.

In l. 3, procedure StrengthenH—detailed in Sect. 4—is called to restore all
PrIC3 invariants on the entire frame sequence: It either returns true if suc-
cessful or returns false and a counterexample (in our case a subsystem of the
MDP) if it was unable to do so. To ensure soundness of PrIC3H, it suffices that
StrengthenH restores the PrIC3 invariants whenever it returns true. Formally,
StrengthenH must meet the following specification:

PrIC3: Property Directed Reachability for MDPs 521

Definition 4. Procedure StrengthenH is sound if the following Hoare triple is
valid:

{
PrIC3Inv (F0, . . . , Fk−1) ∧ Fk−1 ≤ Fk ∧ Φ(Fk−1) ≤ Fk

}

success, F0, . . . , Fk, ← StrengthenH (F0, . . . , Fk)
{

success ⇒ PrIC3Inv (F0, . . . , Fk)
}
.

If StrengthenH returns true, then a new frame Fk+1 = 1 is created in l. 5. After
that, the (now initial) segment F0, . . . , Fk again satisfies all PrIC3 invariants,
whereas the full sequence F0, . . . , Fk+1 potentially violates frame-safety at Fk+1.
Propagation (l. 6) aims to speed up termination by updating Fi+1[s] by Fi[s] iff
this does not violate relative inductivity. Consequently, the previously mentioned
properties remain unchanged.

If StrengthenH returns false, the PrIC3 invariants—premises to Lemma 2 for
witnessing safety—cannot be restored and PrIC3H terminates returning false
(l. 4). Returning false (also possible in l. 8) has by specification no affect on
soundness of PrIC3H.

In l. 7, we check whether there exist two identical consecutive frames. If
so, Lemma 2 yields that the MDP is safe; consequently, PrIC3H returns true.
Otherwise, we increment k and are in the same setting as upon entering the loop,
now with an increased frame sequence; PrIC3H then performs another iteration.
In summary, we obtain:

Theorem 1 (Soundness of PrIC3H). If StrengthenH is sound and Propagate
does not affect the PrIC3 invariants, then PrIC3H is sound, i.e., the following
triple is valid:
{
true

}
safe, ← PrIC3H (M, B, λ)

{
safe =⇒ Prmax (sI |= ♦B) ≤ λ

}

PrIC3H Terminates for Unsafe MDPs. If the MDP is unsafe, then there
exists a step-bound n, such that Prmax (

sI |= ♦≤nB
)

> λ. Furthermore, any
sound implementation of StrengthenH (cf. Definition 4) either immediately termi-
nates PrIC3H by returning false or restores the PrIC3 invariants for F0, . . . , Fk.
If the former case never arises, then StrengthenH will eventually restore the
PrIC3 invariants for a frame sequence of length k = n. By Lemma1, we have
Fn[sI] ≥ Prmax (

sI |= ♦≤nB
)

> λ contradicting frame-safety.

PrIC3H Terminates for Safe MDPs. Standard IC3 terminates on safe finite
TSs as there are only finitely many different frames, making every ascending
chain of frames eventually stabilize. For us, frames map states to probabilities
(Challenge 1), yielding infinitely many possible frames even for finite MDPs.
Hence, StrengthenH need not ever yield a stabilizing chain of frames. If it contin-
uously fails to stabilize while repeatedly reasoning about the same set of states,
we give up. PrIC3H checks this by comparing the subsystem StrengthenH oper-
ates on with the one it operated on in the previous loop iteration (l. 8).

Theorem 2. If StrengthenH and Propagate terminate, then PrIC3H terminates.

522 K. Batz et al.

Recovery Statement 2. For qual. reachability (λ = 0), PrIC3H never termi-
nates in l. 8.

PrIC3H is Incomplete. Standard IC3 either proves safety or returns false
and a counterexample—a single path from the initial to a bad state. As single
paths are insufficient as counterexamples in MDPs (Challenge 2), PrIC3H instead
returns a subsystem of the MDP M provided by StrengthenH. However, as argued
above, we cannot trust StrengthenH to provide a stabilizing chain of frames.
Reporting false thus only means that the given MDP may be unsafe; the
returned subsystem has to be analyzed further.

The full PrIC3 algorithm presented in Sect. 5 addresses this issue. Exploiting
the subsystem returned by PrIC3H, PrIC3 returns true if the MDP is safe;
otherwise, it returns false and provides a true counterexample witnessing that
the MDP is unsafe.

Example 2. We conclude this section with two example executions of PrIC3H
on a simplified version of the MDP in Fig. 1. Assume that action b has been
removed. Then, for every state, exactly one action is enabled, i.e., we consider a
Markov chain. Figure 2 depicts the frame sequences computed by PrIC3H (for a
reasonable H) on that Markov chain for two thresholds: 5/9 = Prmax (s0 |= ♦B)
and 9/10. In particular, notice that proving the coarser bound of 9/10 requires
fewer frames than proving the exact bound of 5/9. �

Fig. 2. Two runs of PrIC3H on the Markov chain induced by selecting action a in Fig. 1.
For every iteration, frames are recorded after invocation of StrengthenH.

4 Strengthening in PrIC3H

When the main loop of PrIC3H has created a new frame Fk = 1 in its previous
iteration, this frame may violate frame-safety (Definition 3.3) because of Fk[sI] =
1 �≤ λ. The task of StrengthenH is to restore the PrIC3 invariants on all frames
F0, . . . , Fk. To this end, our first obligation is to lower the value in frame i = k for
state s = sI to δ = λ ∈ [0, 1]. We denote such an obligation by (i, s, δ). Observe
that implicitly δ = 0 in the qualitative case, i.e., when proving unreachability.
An obligation (i, s, δ) is resolved by updating the values assigned to state s in all
frames F1, . . . , Fi to at most δ. That is, for all j ≤ i, we set Fj [s] to the minimum

PrIC3: Property Directed Reachability for MDPs 523

1 Q ← {(k, sI , λ)} ;
2 while Q not empty do
3 (i, s, δ) ← Q.popMin(); /* pop obligation with minimal frame

index */
4 if i = 0 ∨ (s ∈ B ∧ δ < 1) then

/* possible counterexample given by subsystem
consisting of states popped from Q at some point */

5 return false, , Q.touched();
/* check whether Fi[s] ← δ violates relative inductivity */

6 if ∃a ∈ Act (s) : Φa (Fi−1) [s] > δ then for such an a
7 δ1, . . . , δn ← H (s, a, δ) ;
8 {s1, . . . , sn} ← Succs(s, a);
9 Q.push ((i − 1, s1, δ1) , . . . , (i − 1, sn, δn) , (i, s, δ));

10 else /* resolve (i, s, δ) without violating relative
inductivity */

11 F1[s] ← min (F1[s], δ) ; . . . ; Fi[s] ← min (Fi[s], δ);
12 end
13 (/* Q empty; all obligations have been resolved */) return

true, F0, . . . , Fk, Q.touched();
Algorithm 2: StrengthenH (F0, . . . , Fk)

of δ and the original value Fj [s]. Such an update affects neither initiality nor the
chain property (Definitions 3.1, 3.2). It may, however, violate relative inductivity
(Definition 3.4), i.e., Φ(Fi−1) ≤ Fi. Before resolving obligation (i, s, δ), we may
thus have to further decrease some entries in Fi−1 as well. Hence, resolving
obligations may spawn additional obligations which have to be resolved first to
maintain relative inductivity. In this section, we present a generic instance of
StrengthenH meeting its specification (Definition 4) and discuss its correctness.

StrengthenH by Example. StrengthenH is given by the pseudo code in
Algorithm 2; differences to standard IC3 (cf. [23, Fig. 6]) are highlighted in red.
Intuitively, StrengthenH attempts to recursively resolve all obligations until either
both frame-safety and relative inductivity are restored for all frames or it detects
a potential counterexample justifying why it is unable to do so. We first consider
an execution where the latter does not arise:

Example 3. We zoom in on Example 2: Prior to the second iteration, we have
created the following three frames assigning values to the states s0, s5:

F0 = (0, 0, 0, 0, 1), F1 = (5/9, 1, 1, 1, 1, 1), and F2 = 1.

To keep track of unresolved obligations (i, s, δ), StrengthenH employs a priority
queue Q which pops obligations with minimal frame index i first. Our first step is
to ensure frame-safety of F2, i.e., alter F2 so that F2[s0] ≤ 5/9; we thus initialize
the queue Q with the initial obligation (2, s0, 5/9) (l. 1). To do so, we check
whether updating F2[s0] to 5/9 would invalidate relative inductivity (l. 6). This
is indeed the case:

524 K. Batz et al.

Φ(F1) [s0] = 1/2 · F1[s1] + 1/2 · F1[s2] = 1 �≤ 5/9.

To restore relative inductivity, StrengthenH spawns one new obligation for each
relevant successor of s0. These have to be resolved before retrying to resolve the
old obligation.5

In contrast to standard IC3 , spawning obligations involves finding suitable
probabilities δ (l. 7). In our example this means we have to spawn two obligations
(1, s1, δ1) and (1, s2, δ2) such that 1/2 · δ1 + 1/2 · δ2 ≤ 5/9. There are infinitely
many choices for δ1 and δ2 satisfying this inequality. Assume some heuristic H
chooses δ1 = 11/18 and δ2 = 1/2; we push obligations (1, s1, 11/18), (1, s2, 1/2),
and (2, s0, 5/9) (ll. 8, 9). In the next iteration, we first pop obligation (1, s1, 11/18)
(l. 3) and find that it can be resolved without violating relative inductivity (l. 6).
Hence, we set F1[s1] to 11/18 (l. 11); no new obligation is spawned. Obligation
(1, s2, 1/2) is resolved analogously; the updated frame is F1 = (5/9, 11/18, 1/2, 1).
Thereafter, our initial obligation (2, s0, 5/9) can be resolved; relative inductivity
is restored for F0, F1, F2. Hence, StrengthenH returns true together with the
updated frames. �

StrengthenH is Sound. Let us briefly discuss why Algorithm 2 meets the speci-
fication of a sound implemenation of StrengthenH (Definition 4): First, we observe
that Algorithm 2 alters the frames—and thus potentially invalidates the PrIC3
invariants—only in l. 11 by resolving an obligation (i, s, δ) with Φ(Fi−1) [s] ≤ δ
(due to the check in l. 6).
Let F 〈s �→ δ〉 denote the frame F in which F [s] is set to δ, i.e.,

F 〈s �→ δ〉 [s′] =

{
δ, if s′ = s,

F [s′], otherwise.

Indeed, resolving obligation (i, s, δ) in l. 11 lowers the values assigned to state s
to at most δ without invalidating the PrIC3 invariants:

Lemma 3. Let (i, s, δ) be an obligation and F0, . . . , Fi, for i > 0, be frames with
Φ(Fi−1) [s] ≤ δ. Then PrIC3Inv (F0, . . . , Fi) implies

PrIC3Inv
(

F0

〈
s �→ min (F0[s], δ)

〉
, . . . , Fi

〈
s �→ min (Fi[s], δ)

〉)
.

Crucially, the precondition of Definition 4 guarantees that all PrIC3 invariants
except frame safety hold initially. Since these invariants are never invalidated due
to Lemma3, Algorithm 2 is a sound implementation of StrengthenH if it restores
frame safety whenever it returns true, i.e., once it leaves the loop with an empty
obligation queue Q (ll. 12–13). Now, an obligation (i, s, δ) is only popped from
Q in l. 3. As (i, s, δ) is added to Q upon reaching l. 9, the size of Q can only
ever be reduced (without returning false) by resolving (i, s, δ) in l. 11. Hence,
Algorithm 2 does not return true unless it restored frame safety by resolving,
amongst all other obligations, the initial obligation (k, sI , λ). Consequently:
5 We assume that the set Succs(s, a) = {s′ ∈ S | P (s, a, s′) > 0} of relevant

a-successors of state s is returned in some arbitrary, but fixed order.

PrIC3: Property Directed Reachability for MDPs 525

Lemma 4. Procedure StrengthenH is sound, i.e., it satisfies the specification in
Definition 4.

Theorem 3. Procedure PrIC3H is sound, i.e., satisfies the specification in
Theorem 1.

We remark that, analogously to standard IC3, resolving an obligation in l. 11
may be accompanied by generalization. That is, we attempt to update the values
of multiple states at once. Generalization is, however, highly non-trivial in a
probabilistic setting. We discuss three possible approaches to generalization in
Sect. 6.2.

StrengthenH Terminates. We now show that StrengthenH as in Algorithm 2
terminates. The only scenario in which StrengthenH may not terminate is if it
keeps spawning obligations in l. 9. Let us thus look closer at how obligations are
spawned: Whenever we detect that resolving an obligation (i, s, δ) would violate
relative inductivity for some action a (l. 6), we first need to update the values
of the successor states s1, . . . , sn ∈ Succs(s, a) in frame i−1, i.e., we push the
obligations (i−1, s1, δ1), . . . , (i−1, sn, δn) which have to be resolved first (ll. 7–9).
It is noteworthy that, for a TS, a single action leads to a single successor state
s1. Algorithm 2 employs a heuristic H to determine the probabilities required
for pushing obligations (l. 7). Assume for an obligation (i, s, δ) that the check
in l. 6 yields ∃a ∈ Act (s) : Φa (Fi−1) [s] > δ. Then H takes s, a, δ and reports
some probability δj for every a-successor sj of s. However, an arbitrary heuristic
of type H : S × Act × [0, 1] → [0, 1]∗ may lead to non-terminating behavior:
If δ1, . . . , δn = Fi−1[s1], . . . Fi−1[sn], then the heuristic has no effect. It is thus
natural to require that an adequate heuristic H yields probabilities such that
the check Φa (Fi−1) [s] > δ in l. 6 cannot succeed twice for the same obligation
(i, s, δ) and same action a. Formally, this is guaranteed by the following:

Definition 5. Heuristic H is adequate if the following triple is valid (for any
frame F):

{
Succs(s, a) = s1, . . . , sn

}

δ1, . . . , δn ← H(s, a, δ)
{

Φa

(
F 〈s1 �→ δ1〉 . . . 〈sn �→ δn〉) [s] ≤ δ

}
�

Details regarding our implementation of heuristic H are found in Sect. 6.1.
For an adequate heuristic, attempting to resolve an obligation (i, s, δ) (ll. 3

– 11) either succeeds after spawning it at most |Act(s)| times or StrengthenH
returns false. By a similar argument, attempting to resolve an obligation (i >
0, s,) leads to at most

∑
a∈Act(s) |{s′ ∈ S | P (s, a, s′) > 0}| other obligations

of the form (i−1, s′,). Consequently, the total number of obligations spawned
by Algorithm 2 is bounded. Since Algorithm 2 terminates if all obligations have
been resolved (l. 12) and each of its loop iterations either returns false, spawns
obligations, or resolves an obligation, we conclude:

526 K. Batz et al.

Lemma 5. StrengthenH(F0, . . . , Fk) terminates for every adequate heuristic H.

Recovery Statement 3. Let H be adequate. Then for qualitative reachability
(λ = 0), all obligations spawned by StrengthenH as in Algorithm 2 are of the
form (i, s, 0).

StrengthenH returns false. There are two cases in which StrengthenH fails to
restore the PrIC3 invariants and returns false. The first case (the left disjunct
of l. 4) is that we encounter an obligation for frame F0. Resolving such an
obligation would inevitably violate initiality ; analogously to standard IC3, we
thus return false.

The second case (the right disjunct of l. 4) is that we encounter an obligation
(i, s, δ) for a bad state s ∈ B with a probability δ < 1 (though, obviously,
all s ∈ B have probability =1). Resolving such an obligation would inevitably
prevents us from restoring relative inductivity : If we updated Fi[s] to δ, we would
have Φ(Fi−1) [s] = 1 > δ = Fi[s]. Notice that, in contrast to standard IC3, this
second case can occur in PrIC3:

Example 4. Assume we have to resolve an obligation (i, s3, 1/2) for the MDP in
Fig. 1. This involves spawning obligations (i−1, s4, δ1) and (i−1, s5, δ2), where
s5 is a bad state, such that 1/3 · δ1 + 2/3 · δ2 ≤ 1/2. Even for δ1 = 0, this is only
possible if δ2 ≤ 3/4 < 1. �

StrengthenH Cannot Prove Unsafety. If standard IC3 returns false, it
proves unsafety by constructing a counterexample, i.e., a single path from the
initial state to a bad state. If PrIC3 returns false, there are two possible reasons:
Either the MDP is indeed unsafe, or the heuristic H at some point selected prob-
abilities in a way such that StrengthenH is unable to restore the PrIC3 invariants
(even though the MDP might in fact be safe). StrengthenH thus only returns
a potential counterexample which either proves unsafety or indicates that our
heuristic was inappropriate.

Counterexamples in our case consist of subsystems rather than a single path
(see Challenge 2 and Sect. 5). StrengthenH hence returns the set Q.touched()
of all states that eventually appeared in the obligation queue. This set is a
conservative approximation, and optimizations as in [1] may be beneficial. Fur-
thermore, in the qualitative case, our potential counterexample subsumes the
counterexamples constructed by standard IC3:

Recovery Statement 4. Let H0 be the adequate heuristic mapping every state
to 0. For qual. reachability (λ = 0), if success = false is returned by
StrengthenH0

(F0, . . . , Fk), then Q.touched() contains a path from the initial to
a bad state.6

6 Q.touched() might be restricted to only contain this path by some simple adaptions.

PrIC3: Property Directed Reachability for MDPs 527

Data: global MDP M, set of bad states B, threshold λ
Result: true iff Prmax (sI |= ♦B) ≤ λ

1 Ω ← Initialize(); touched ← {sI};
2 do
3 H ← CreateHeuristic(Ω); safe, subsystem ← PrIC3H();
4 if safe then return true ;
5 if CheckRefutation(subsystem) then return false ;
6 touched ← Enlarge(touched, subsystem);
7 Ω ← Refine(Ω, touched);
8 while touched 	= S;
9 return Ω(sI) ≤ λ
Algorithm 3: PrIC3: The outermost loop dealing with possibly imprecise
heuristics

5 Dealing with Potential Counterexamples

Recall that our core algorithm PrIC3H is incomplete for a fixed heuristic H: It
cannot give a conclusive answer whenever it finds a potential counterexample
for two possible reasons: Either the heuristic H turned out to be inappropriate
or the MDP is indeed unsafe. The idea to overcome the former is to call PrIC3H
finitely often in an outer loop that generates new heuristics until we find an
appropriate one: If PrIC3H still does not report safety of the MDP, then it is
indeed unsafe. We do not blindly generate new heuristics, but use the potential
counterexamples returned by PrIC3H to refine the previous one.

Let consider the procedure PrIC3 in Algorithm 3 which wraps our core
algorithm PrIC3H in more detail: First, we create an oracle Ω: S → [0, 1]
which (roughly) estimates the probability of reaching B for every state. A per-
fect oracle would yield precise maximal reachability probabilites, i.e., Ω(s) =
Prmax (s |= ♦B) for every state s. We construct oracles by user-supplied methods
(highlighted in blue). Examples of implementations of all user-supplied methods
in Algorithm 3 are discussed in Sect. 7.

Assuming the oracle is good, but not perfect, we construct an adequate
heuristic H selecting probabilities based on the oracle7 for all successors of a
given state: There are various options. The simplest is to pass-through the ora-
cle values. A version that is more robust against noise in the oracle is discussed
in Sect. 6. We then invoke PrIC3H. If PrIC3H reports safety, the MDP is indeed
safe by the soundness of PrIC3H.

Check Refutation. If PrIC3H does not report safety, it reports a subsystem
that hints to a potential counterexample. Formally, this subsystem is a subMDP
of states that were ‘visited’ during the invocation of StrengthenH.

Definition 6 (subMDP). Let M = (S, sI , Act, P) be an MDP and let S′ ⊆ S
with sI ∈ S′. We call MS′ = (S′, sI , Act, P ′) the subMDP induced by M and
S′, where for all s, s′ ∈ S′ and all a ∈ Act, we have P ′(s, a, s′) = P (s, a, s′). �
7 We thus assume that heuristic H invokes the oracle whenever it needs to guess some

probability.

528 K. Batz et al.

A subMDP MS′ may be substochastic where missing probability mass never
reaches a bad state. Definition 1 is thus relaxed: For all states s ∈ S′ we require
that

∑
s′∈S′ P (s, a, s′) ≤ 1.If the subsystem is unsafe, we can conclude that the

original MDP M is also safe.

Lemma 6. If M′ is a subMDP of M and M′ is unsafe, then M is also unsafe.

The role of CheckRefutation is to establish whether the subsystem is indeed a
true counterexample or a spurious one. Formally, CheckRefutation should ensure:

{
true

}
res ← CheckRefutation (subsystem)

{
res = true ⇔ Msubsystem unsafe

}
.

Again, PrIC3 is backward compatible in the sense that a single fixed heuristic is
always sufficient when reasoning about reachability (λ = 0).

Recovery Statement 5. For qualitative reachability (λ = 0) and the heuristic
H0 from Recovery Statement 4, PrIC3 invokes its core PrIC3H exactly once.

This statement is true, as PrIC3H returns either safe or a subsystem containing
a path from the initial state to a bad state. In the latter case, CheckRefutation
detects that the subsystem is indeed a counterexample which cannot be spurious
in the qualitative setting.

We remark that the procedure CheckRefutation invoked in l. 5 is a classical
fallback; it runs an (alternative) model checking algorithm, e.g., solving the set
of Bellman equations, for the subsystem. In the worst case, i.e., for S′ = S, we
thus solve exactly our problem statement. Empirically (Table 1) we observe that
for reasonable oracles the procedure CheckRefutation is invoked on significantly
smaller subMDPs. However, in the worst case the subMDP must include all
paths of the original MDP, and then thus coincides.

Refine Oracle. Whenever we have neither proven the MDP safe nor unsafe, we
refine the oracle to prevent generating the same subsystem in the next invocation
of PrIC3H. To ensure termination, oracles should only be refined finitely often.
That is, we need some progress measure. The set touched overapproximates all
counterexamples encountered in some invocation of PrIC3H and we propose to
use its size as the progress measure. While there are several possibilities to update
touched through the user-defined procedure Enlarge (l. 6), every implementation
should hence satisfy

{
true

}
touched′ ← Enlarge(touched,)

{ |touched′| >

|touched|}. Consequently, after finitely many iterations, the oracle is refined
with respect to all states. In this case, we may as well rely on solving the char-
acteristic LP problem:

Lemma 7. The algorithm PrIC3 in Algorithm 3 is sound and complete if
Refine(Ω, S) returns a perfect oracle Ω (with S is the set of all states).

Weaker assumptions on Refine are possible, but are beyond the scope of this
paper. Moreover, the above lemma does not rely on the abstract concept that
heuristic H provides suitable probabilities after finitely many refinements.8

8 One could of course now also create a heuristic that is trivial for a perfect oracle and
invoke PrIC3H with the heuristic for the perfect oracle, but there really is no benefit
in doing so.

PrIC3: Property Directed Reachability for MDPs 529

6 Practical PrIC3

So far, we gave a conceptual view on PrIC3, but now take a more practical stance.
We detail important features of effective implementations of PrIC3 (based on our
empirical evaluation). We first describe an implementation without generaliza-
tion, and then provide a prototypical extension that allows for three variants of
generalization.

6.1 A Concrete PrIC3 Instance Without Generalization

Input. We describe MDPs using the Prism guarded command language9, exem-
plified in Fig. 3. States are described by valuations to m (integer-valued) program
variables vars, and outgoing actions are described by commands of the form

[] guard -> prob1 : update1 & ... & probk : updatek

If a state satisfies guard, then the corresponding action with k branches exists;
probabilities are given by probi, the successor states are described by updatei,
see Fig. 3b.

Fig. 3. Illustrative Prism-style probabilistic guarded command language example

Encoding. We encode frames as logical formulae. Updating frames then corre-
sponds to adding conjuncts, and checking for relative inductivity is a satisfiability
call. Our encoding is as follows: States are assignments to the program variables,
i.e., States = Z

m. We use various uninterpreted functions, to whom we give
semantics using appropriate constraints. Frames10 are represented by uninter-
preted functions Frame : States → R satisfying Frame (s) = d implies F [s] ≥ d.
Likewise, the Bellman operator is an uninterpreted function Phi : States → R

such that Phi (s) = d implies Φ(F) [s] ≥ d. Finally, we use Bad : States → B with
Bad (s) iff s ∈ B.

Among the appropriate constraints, we ensure that variables are within their
range, bound the values for the frames, and enforce Phi (s) = 1 for s ∈ B.
We encode the guarded commands as exemplified by this encoding of the first
command in Fig. 3:

∀ s ∈ States : ¬Bad (s) ∧ s[c] < 20
=⇒ Phi (s) = 0.1 · Frame ((s[c], 1)) + 0.9 · Frame ((s[c] + 1, s[f])) .

9 Preprocessing ensures a single thread (module) and no deadlocks.
10 In each operation, we only consider a single frame.

530 K. Batz et al.

In our implementation, we optimize the encoding. We avoid the uninterpreted
functions by applying an adapted Ackerman reduction. We avoid universal quan-
tifiers, by first observing that we always ask whether a single state is not induc-
tive, and then unfolding the guarded commands in the constraints that describe
a frame. That encoding grows linear in the size of the maximal out-degree of the
MDP, and is in the quantifier-free fragment of linear arithmetic (QFLRIA).

Heuristic. We select probabilities δi by solving the following optimization prob-
lem, with variables xi, range(xi) ∈ [0, 1], for states si ∈ Succs(s, a) and
oracle Ω11.

minimize
k∑

i
si �∈B

∣
∣
∣
∣
∣

xi
∑k

j=1 xj

− Ω(si)∑n
j=1 Ω(sj)

∣
∣
∣
∣
∣

s.t. δ =
k∑

i=1

P (s, a, si) ·
{

1, if si ∈ B,

xi, else.

The constraint ensures that, if the values xi correspond to the actual reacha-
bility probabilities from si, then the reachability from state s is exactly δ. A
constraint stating that δ ≥ . . . would also be sound, but we choose equality
as it preserves room between the actual probability and the threshold we want
to show. Finally, the objective function aims to preserve the ratio between the
suggested probabilities.

Repushing and Breaking Cycles. Repushing [23] is an essential ingredient of both
standard IC3 and PrIC3. Intuitively, we avoid opening new frames and spawning
obligations that can be deduced from current information. Since repushing gener-
ates further obligations in the current frame, its implementation requires that the
detection of Zeno-behavior has to be moved from PrIC3H into the StrengthenH
procedure. Therefore, we track the histories of the obligations in the queue. Fur-
thermore, once we detect a cycle we first try to adapt the heuristic H locally
to overcome this cyclic behavior instead of immediately giving up. This local
adaption reduces the number of PrIC3H invocations.

Extended Queue. In contrast to standard IC3, the obligation queue might contain
entries that vary only in their δ entry. In particular, if the MDP is not a tree, it
may occur that the queue contains both (i, s, δ) and (i, s, δ′) with δ > δ′. Then,
(i, s, δ′) can be safely pruned from the queue. Similarly, after handling (i, s, δ), if
some fresh obligation (i, s, δ′′ > δ) is pushed to the queue, it can be substituted
with (i, s, δ). To efficiently operationalize these observations, we keep an addi-
tional mapping which remains intact over multiple invocations of StrengthenH.
We furthermore employed some optimizations for Q.touched() aiming to track
potential counterexamples better. After refining the heuristic, one may want to
reuse frames or the obligation queue, but empirically this leads to performance
degradation as the values in the frames are inconsistent with behavior suggested
by the heuristic.
11 If max Ω(sj) = 0, we assume ∀j.Ω(sj) = 0.5. If δ = 0, we omit rescaling to allow∑

xj = 0.

PrIC3: Property Directed Reachability for MDPs 531

6.2 Concrete PrIC3 with Generalization

So far, frames are updated by changing single entries whenever we resolve obli-
gations (i, s, δ), i.e., we add conjunctions of the form Fi[s] ≤ δ. Equivalently, we
may add a constraint ∀s′ ∈ S : Fi[s′] ≤ p{s}(s′) with p{s}(s) = δ and p{s} = 1
for all s′ �= s.

Generalization in IC3 aims to update a set G (including s) of states in a frame
rather than a single one without invalidating relative inductivity. In our setting,
we thus consider a function pG : G → [0, 1] with pG(s) ≤ δ that assigns (possibly
different) probabilities to all states in G. Updating a frame then amounts to
adding the constraint

∀ s ∈ States : s ∈ G =⇒ Frame (s) ≤ pG(s).

Standard IC3 generalizes by iteratively “dropping” a variable, say v. The set G
then consists of all states that do not differ from the fixed state s except for
the value of v.12 We take the same approach by iteratively dropping program
variables. Hence, pG effectively becomes a mapping from the value s[v] to a
probability. We experimented with four types of functions pG that we describe
for Markov chains. The ideas are briefly outlined below; details are beyond the
scope of this paper.

Constant pG. Setting all s ∈ G to δ is straightforward but empirically not helpful.

Linear Interpolation. We use a linear function pG that interpolates two points.
The first point (s[v], δ) is obtained from the obligation (i, s, δ). For a second
point, consider the following: Let Com be the unique13 command active at state
s. Among all states in G that are enabled in the guard of Com, we take the
state s′ in which s′[v] is maximal14. The second point for interpolation is then
(s′[v],Φ(Fi−1) [s′]). If the relative inductivity fails for pG we do not generalize
with pG, but may attempt to find other functions.

Polynomial Interpolation. Rather than linearly interpolating between two points,
we may interpolate using more than two points. In order to properly fit these
points, we can use a higher-degree polynomial. We select these points using
counterexamples to generalization (CTGs): We start as above with linear inter-
polation. However, if pG is not relative inductive, the SMT solver yields a model
with state s′′ ∈ G and probability δ′′, with s′′ violating relative inductivity, i.e.,
Φ(Fi−1) [s′′] > δ′′. We call (s′′,Φ(Fi−1) [s′′]) a CTG, and (s′′[v],Φ(Fi−1) [s′′]))
is then a further interpolation point, and we repeat.

Technically, when generalizing using nonlinear constraints, we use real-valued
arithmetic with a branch-and-bound-style approach to ensure integer values.

12 Formally, G = {s′ | for all v′ ∈ vars \ {v} : s′(v′) = s(v′)}.
13 Recall that we have a Markov chain consisting of a single module.
14 This implicitly assumes that v is increased. Adaptions are possible.

532 K. Batz et al.

Hybrid Interpolation. In polynomial interpolation, we generate high-degree poly-
nomials and add them to the encoding of the frame. In subsequent invoca-
tions, reasoning efficiency is drastically harmed by these high-degree polyno-
mials. Instead, we soundly approximate pG by a piecewise linear function, and
use these constraints in the frame.

7 Experiments

We assess how PrIC3 may contribute to the state of the art in probabilistic model
checking. We do some early empirical evaluation showing that PrIC3 is feasible.
We see ample room for further improvements of the prototype.

Implementation. We implemented a prototype15 of PrIC3 based on Sect. 6.1 in
Python. The input is represented using efficient data structures provided by the
model checker Storm. We use an incremental instance of Z3 [47] for each frame,
as suggested in [23]. A solver for each frame is important to reduce the time
spent on pushing the large frame-encodings. The optimization problem in the
heuristic is also solved using Z3. All previously discussed generalizations (none,
linear, polynomial, hybrid) are supported.

Oracle and Refinement. We support the (pre)computation of four different types
of oracles for the initialization step in Algorithm 3: (1) A perfect oracle solving
exactly the Bellman equations. Such an oracle is unrealistic, but interesting from
a conceptual point. (2) Relative frequencies by recording all visited states during
simulation. This idea is a naïve simplification of Q-learning. (3) Model checking
with decision diagrams (DDs) and few value iterations. Often, a DD representa-
tion of a model can be computed fast, and the challenge is in executing sufficient
value iterations. We investigate whether doing few value iterations yields a valu-
able oracle (and covers states close to bad states). (4) Solving a (pessimistic) LP
from BFS partial exploration. States that are not expanded are assumed bad.
Roughly, this yields oracles covering states close to the initial states.

To implement Refine (cf. Algorithm 3, l. 7), we create an LP for the subMDP
induced by the touched states. For states whose successors are not in the touched
states, we add a transition to B labeled with the oracle value as probability. The
solution of the resulting LP updates the entries corresponding to the touched
states.

For Enlarge (cf. Algorithm 3, l. 6), we take the union of the subsystem and
the touched states. If this does not change the set of touched states, we also add
its successors.

Setup. We evaluate the run time and memory consumption of our prototype
of PrIC3. We choose a combination of models from the literature (BRP [21],
ZeroConf [18]) and some structurally straightforward variants of grids (chain,
double chain; see [11, Appendix A]). Since our prototype lacks the sophisticated
15 The prototype is available open-source from https://github.com/moves-rwth/PrIC3.

https://github.com/moves-rwth/PrIC3

PrIC3: Property Directed Reachability for MDPs 533

preprocessing applied by many state-of-the-art model checkers, it is more sen-
sitive to the precise encoding of a model, e.g., the number of commands. To
account for this, we generated new encodings for all models. All experiments
were conducted on an single core of an Intel® Xeon® Platinum 8160 proces-
sor. We use a 15min time-limit and report TO otherwise. Memory is limited to
8GB; we report MO if it is exceeded. Apart from the oracle, all parameters of
our prototype remain fixed over all experiments. To give an impression of the
run times, we compare our prototype with both the explicit (Stormsparse) and
DD-based (Stormdd) engine of the model checker Storm 1.4, which compared
favourably in QComp [29].

Results. In Table 1, we present the run times for various invocations of our pro-
totype and Oracle 416. In particular, we give the model name and the number of
(non-trivial) states in the particular instance, and the (estimated) actual proba-
bility to reach B. For each model, we consider multiple thresholds λ. The next 8
columns report on the four variants of PrIC3 with varying generalization schemes.
Besides the scheme with the run times, we report for each scheme the number of
states of the largest (last) subsystem that CheckRefutation in Algorithm 3, l. 5
was invoked upon (column |sub|). The last two columns report on the run times
for Storm that we provide for comparison. In each row, we mark with purple
MDPs that are unsafe, i.e., PrIC3 refutes these MDPs for the given threshold λ.
We highlight the best configurations of PrIC3.

Discussion. Our experiments give a mixed picture on the performance of our
implementation of PrIC3. On the one hand, Storm significantly outperforms
PrIC3 on most models. On the other hand, PrIC3 is capable of reasoning about
huge, yet simple, models with up to 1012 states that Storm is unable to analyze
within the time and memory limits. There is more empirical evidence that PrIC3
may complement the state-of-the-art:

First, the size of thresholds matters. Our benchmarks show that—at least
without generalization—more “wiggle room” between the precise maximal reach-
ability probability and the threshold generally leads to a better performance.
PrIC3 may thus prove bounds for large models where a precise quantitative
reachability analysis is out of scope.

Second, PrIC3 enjoys the benefits of bounded model checking. In some cases,
e.g., ZeroConf for λ = 0.45, PrIC3 refutes very fast as it does not need to
build the whole model.

Third, if PrIC3 proves the safety of the system, it does so without relying on
checking large subsystems in the CheckRefutation step.

Fourth, generalization is crucial. Without generalization, PrIC3 is unable to
prove safety for any of the considered models with more than 103 states. With
generalization, however, it can prove safety for very large systems and thresholds
close to the exact reachability probability. For example, it proved safety of the

16 We explore min{|S|, 5000} states using BFS and Storm.

534 K. Batz et al.

Table 1. Empirical results. Run times are in seconds; time out = 15min.

|S| Prmax (sI |= ♦B)λ w/o |sub|lin |sub|pol |sub|hyb |sub|StormsparseStormdd

BRP 103 0.035 0.1 TO – TO – TO – TO – <0.1 0.12

0.01 51.3 324 125.8324 TO – MO – <0.1 0.18

0.005 10.9 188 38.3 188 TO – MO – <0.1 0.1

ZeroConf 104 0.5 0.9 TO – TO – 0.4 0 0.1 0 <0.1 296.8

0.52 TO – TO – 0.2 0 0.2 0 <0.1 282.6

0.45 <0.1 1 <0.11 <0.1 1 <0.11 <0.1 300.2

109 ∼0.55 0.9 TO – TO – 3.7 0 MO – MO TO

0.75 TO – TO – 3.4 0 MO – MO TO

0.52 TO – TO – TO – TO – MO TO

0.45 <0.1 1 <0.11 <0.1 1 <0.11 MO TO

Chain 103 0.394 0.9 18.8 0 60.2 0 1.2 0 0.3 0 <0.1 <0.1

0.4 20.1 0 55.4 0 0.9 0 TO – <0.1 <0.1

0.35 91.8 431 119.5431 TO – TO – <0.1 <0.1

0.3 46.1 357 64.0 357 TO – TO – <0.1 <0.1

104 0.394 0.9 TO – TO – 1.6 0 0.3 0 <0.1 4.5

0.4 TO – TO – 1.4 0 TO – <0.1 4.9

0.3 TO – TO – TO – TO – <0.1 4.9

10120.394 0.9 TO – TO – 6.4 0 MO – MO TO

0.4 TO – TO – 6.0 0 MO – MO TO

Double chain103 0.215 0.9 528.1 0 828.80 203.3 0 0.6 0 <0.1 <0.1

0.3 588.4 0 TO – 138.3 0 0.5 0 <0.1 <0.1

0.216 597.40 TO – 765.8 0 MO – <0.1 <0.1

0.15 TO – TO – TO – TO – <0.1 <0.1

104 0.22 0.3 TO – TO – 17.5 0 0.5 0 0.2 2.6

0.24 TO – TO – 16.8 0 MO – 0.2 2.7

107 2.6E−4 4E−3 TO – TO – TO – MO – TO TO

2.7E−4TO – TO – 281.20 MO – TO TO

Chain benchmark with 1012 states for a threshold of 0.4 which differs from the
exact reachability probability by 0.006.

Fifth, there is no best generalization. There is no clear winner out of the con-
sidered generalization approaches. Linear generalization always performs worse
than the other ones. In fact, it performs worse than no generalization at all.
The hybrid approach, however, occasionally has the edge over the polyno-
mial approach. This indicates that more research is required to find suitable
generalizations.

In [11, Appendix A], we also compare the additional three types of oracles
(1–3). We observed that only few oracle refinements are needed to prove safety ;
for small models at most one refinement was sufficient. However, this does not
hold if the given MDP is unsafe. DoubleChain with λ = 0.15, for example, and
Oracle 2 requires 25 refinements.

8 Conclusion

We have presented PrIC3—the first truly probabilistic, yet conservative, exten-
sion of IC3 to quantitative reachability in MDPs. Our theoretical development

PrIC3: Property Directed Reachability for MDPs 535

is accompanied by a prototypical implementation and experiments. We believe
there is ample space for improvements including an in-depth investigation of
suitable oracles and generalizations.

References

1. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P., Wimmer, R.:
Counterexample generation for discrete-time Markov models: an introductory sur-
vey. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 65–121. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-07317-0_3

2. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model.
Comput. Simul. 28(1), 6:1–6:39 (2018)

3. Agrawal, S., Chatterjee, K., Novotný, P.: Lexicographic ranking supermartin-
gales: an efficient approach to termination of probabilistic programs. In: PACMPL
2(POPL), pp. 34:1–34:32 (2018)

4. de Alfaro, L., Kwiatkowska, M., Norman, G., Parker, D., Segala, R.: Symbolic
model checking of probabilistic processes using MTBDDs and the kronecker repre-
sentation. In: Graf, S., Schwartzbach, M. (eds.) TACAS 2000. LNCS, vol. 1785, pp.
395–410. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46419-0_27

5. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilis-
tic systems. Handbook of Model Checking, pp. 963–999. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-10575-8_28

6. Baier, C., Hermanns, H., Katoen, J.-P.: The 10,000 facets of MDP model checking.
In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol.
10000, pp. 420–451. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-
91908-9_21

7. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

8. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-
ability of your model checker: interval iteration for markov decision processes.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 160–180.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_8

9. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing probabilistic
invariants via Doob’s decomposition. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9779, pp. 43–61. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41528-4_3

10. Bartocci, E., Kovács, L., Stankovič, M.: Automatic generation of moment-based
invariants for prob-solvable loops. In: Chen, Y.-F., Cheng, C.-H., Esparza, J. (eds.)
ATVA 2019. LNCS, vol. 11781, pp. 255–276. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31784-3_15

11. Batz, K., Junges, S., Kaminski, B.L., Katoen, J.-P., Matheja, C., Schröer, P.: Pric3:
Property directed reachability for MDPS. ArXiv e-prints (2020). https://arxiv.org/
abs/2004.14835

12. Biere, A.: Bounded model checking, Handbook of Satisfiability. Frontiers in Arti-
ficial Intelligence and Applications, vol. 185, pp. 457–481. IOS Press (2009)

13. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/978-3-319-07317-0_3
https://doi.org/10.1007/3-540-46419-0_27
https://doi.org/10.1007/978-3-319-10575-8_28
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-91908-9_21
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-319-41528-4_3
https://doi.org/10.1007/978-3-030-31784-3_15
https://doi.org/10.1007/978-3-030-31784-3_15
https://arxiv.org/abs/2004.14835
https://arxiv.org/abs/2004.14835
https://doi.org/10.1007/978-3-642-18275-4_7

536 K. Batz et al.

14. Brázdil, T., Chatterjee, K., Chmelík, M., Forejt, V., Křetínský, J., Kwiatkowska,
M., Parker, D., Ujma, M.: Verification of Markov decision processes using learning
algorithms. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp.
98–114. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6_8

15. Chadha, R., Viswanathan, M.: A counterexample-guided abstraction-refinement
framework for Markov decision processes. ACM Trans. Comput. Logist. 12(1),
1:1–1:49 (2010)

16. Chakarov, A., Sankaranarayanan, S.: Probabilistic program analysis with martin-
gales. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 511–526.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_34

17. Chakraborty, S., Fried, D., Meel, K.S., Vardi, M.Y.: From weighted to unweighted
model counting. In: IJCAI, pp. 689–695. AAAI Press (2015)

18. Cheshire, S., Aboba, B., Guttman, E.: Dynamic configuration of ipv4 link-local
addresses. RFC 3927, 1–33 (2005)

19. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. FMSD 49(3), 190–218 (2016)

20. D’Argenio, P.R., Hartmanns, A., Sedwards, S.: Lightweight statistical model check-
ing in nondeterministic continuous time. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11245, pp. 336–353. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03421-4_22

21. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability analysis of
probabilistic systems by successive refinements. In: de Alfaro, L., Gilmore, S. (eds.)
PAPM-PROBMIV 2001. LNCS, vol. 2165, pp. 39–56. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44804-7_3

22. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9_31

23. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: FMCAD, pp. 125–134. FMCAD Inc. (2011)

24. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: a
novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M.,
Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78929-1_13

25. Gretz, F., Katoen, J.-P., McIver, A.: Prinsys—On a Quest for Probabilistic Loop
Invariants. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST
2013. LNCS, vol. 8054, pp. 193–208. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40196-1_17

26. Gretz, F., Katoen, J.-P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

27. Gurfinkel, A., Ivrii, A.: Pushing to the top. In: FMCAD, pp. 65–72. IEEE (2015)
28. Haddad, S., Monmege, B.: Interval iteration algorithm for MDPs and IMDPs.

Theor. Comput. Sci. 735, 111–131 (2018)
29. Hahn, E.M., Hartmanns, A., Hensel, C., Klauck, M., Klein, J., Křetínský, J.,

Parker, D., Quatmann, T., Ruijters, E., Steinmetz, M.: The 2019 comparison of
tools for the analysis of quantitative formal models. In: Beyer, D., Huisman, M.,
Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS, vol. 11429, pp. 69–92. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17502-3_5

https://doi.org/10.1007/978-3-319-11936-6_8
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/978-3-030-03421-4_22
https://doi.org/10.1007/3-540-44804-7_3
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-540-78929-1_13
https://doi.org/10.1007/978-3-642-40196-1_17
https://doi.org/10.1007/978-3-642-40196-1_17
https://doi.org/10.1007/978-3-030-17502-3_5

PrIC3: Property Directed Reachability for MDPs 537

30. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PASS: abstraction refinement
for infinite probabilistic models. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 353–357. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12002-2_30

31. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9_22

32. Han, T., Katoen, J.-P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. Software Eng. 35(2), 241–257 (2009)

33. Hark, M., Kaminski, B.L., Giesl, J., Katoen, J.-P.: Aiming low is harder: Induction
for lower bounds in probabilistic program verification. In: PACMPL 4(POPL),
37:1–37:28 (2020)

34. Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment
for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.)
TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54862-8_51

35. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. CAV. LNCS, Springer
(2020). [to appear]

36. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in IC3. In: FMCAD,
pp. 157–164. IEEE (2013)

37. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70545-1_16

38. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8_13

39. Kaminski, B.L.: Advanced Weakest Precondition Calculi for Probabilistic Pro-
grams. Ph.D. thesis, RWTH Aachen University, Germany (2019). http://
publications.rwth-aachen.de/record/755408/files/755408.pdf

40. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected runtimes of randomized algorithms. J. ACM 65(5), 30:1–
30:68 (2018)

41. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for Markov decision processes. FMSD 36(3),
246–280 (2010)

42. Kozen, D.: A probabilistic PDL. In: STOC, pp. 291–297. ACM (1983)
43. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic

real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1_47

44. Lange, T., Neuhäußer, M.R., Noll, T., Katoen, J.-P.: IC3 software model checking.
In: STTT, vol. 22, pp. 135–161 (2020)

45. Lassez, J.L., Nguyen, V.L., Sonenberg, L.: Fixed point theorems and semantics: a
folk tale. Inf. Process. Lett. 14(3), 112–116 (1982)

46. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science. Springer, New York (2005). https://doi.
org/10.1007/b138392

47. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-642-12002-2_30
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-540-70545-1_16
https://doi.org/10.1007/978-3-642-31612-8_13
http://publications.rwth-aachen.de/record/755408/files/755408.pdf
http://publications.rwth-aachen.de/record/755408/files/755408.pdf
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/978-3-540-78800-3_24

538 K. Batz et al.

48. Park, D.: Fixpoint induction and proofs of program properties. Machine intelligence
5, 59–78 (1969)

49. Polgreen, E., Brain, M., Fränzle, M., Abate, A.: Verifying reachability properties
in Markov chains via incremental induction. CoRR abs/1909.08017 (2019)

50. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley, Hoboken (1994)

51. Quatmann, T., Katoen, J.-P.: Sound value iteration. In: Chockler, H., Weis-
senbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 643–661. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-96145-3_37

52. Rabe, M.N., Wintersteiger, C.M., Kugler, H., Yordanov, B., Hamadi, Y.: Symbolic
approximation of the bounded reachability probability in large Markov chains.
In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 388–403.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10696-0_30

53. Seufert, T., Scholl, C.: Sequential verification using reverse PDR. MBMV. pp. 79–
90. Shaker Verlag (2017)

54. Suenaga, K., Ishizawa, T.: Generalized property-directed reachability for hybrid
systems. In: Beyer, D., Zufferey, D. (eds.) VMCAI 2020. LNCS, vol. 11990, pp.
293–313. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39322-9_14

55. Takisaka, T., Oyabu, Y., Urabe, N., Hasuo, I.: Ranking and repulsing supermartin-
gales for reachability in probabilistic programs. In: Lahiri, S.K., Wang, C. (eds.)
ATVA 2018. LNCS, vol. 11138, pp. 476–493. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-01090-4_28

56. Vazquez-Chanlatte, M., Rabe, M.N., Seshia, S.A.: A model counter’s guide to
probabilistic systems. CoRR abs/1903.09354 (2019)

57. Wimmer, R., Braitling, B., Becker, B.: Counterexample generation for discrete-
time markov chains using bounded model checking. In: Jones, N.D., Müller-Olm,
M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 366–380. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-93900-9_29

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-96145-3_37
https://doi.org/10.1007/978-3-319-10696-0_30
https://doi.org/10.1007/978-3-030-39322-9_14
https://doi.org/10.1007/978-3-030-01090-4_28
https://doi.org/10.1007/978-3-030-01090-4_28
https://doi.org/10.1007/978-3-540-93900-9_29
http://creativecommons.org/licenses/by/4.0/

	PrIC3: Property Directed Reachability for MDPs
	1 Introduction
	2 Problem Statement
	3 The Core PrIC3 Algorithm
	3.1 Inductive Frames
	3.2 The PrIC3 Invariants
	3.3 Operationalizing the PrIC3 Invariants for Proving Safety

	4 Strengthening in PrIC3H
	5 Dealing with Potential Counterexamples
	6 Practical PrIC3
	6.1 A Concrete PrIC3 Instance Without Generalization
	6.2 Concrete PrIC3 with Generalization

	7 Experiments
	8 Conclusion
	References

