135 research outputs found

    Closed Form Discrete Unimodular MIMO Waveform Design Using Block Circulant Decomposition

    Get PDF
    This paper deals with the waveform design under the constraint of discrete multiphase unimodular sequences. It relies on Block Circulant decomposition of the slow-time transmitted waveform. The presented closed-form solution is capable of designing orthogonal signals, such that the virtual MIMO paradigm is enabled leading to enhanced angular resolution. On the other hand, the proposed method is also capable of approximating any desired radiation pattern within the physical limits of the transmitted array size. Simulation results prove the effectiveness in terms computational complexity, orthogonal signal design and the transmit beam pattern design under constant modulus constraint

    Methods and Criteria affecting Early-Stage Venture Valuation

    Get PDF
    The valuation of Start-Ups, especially in an early stage of the life-cycle remains a difficult undertaking with a strong tendency towards subjectivity. Conventional valuation methods can generally not be applied, as they either do not adequately account for the characteristics of Start-Up companies or need to be considered as impractical. With fundraising for venture investments continuously increasing, this challenge deserves a closer investigation. We therefore developed a survey to get a deeper understanding of the valuation practice of German-speaking Venture Capitalists and Business Angels. The specific topics of interest in this survey included the knowledge and usage of methods for Start-Up valuation, the criteria and performance indicators considered to drive Start-Up value as well as the current situation and trends in venture investment. We found clear differences between early-stage Start-Up valuation practice and later-stage valuation practice with an overall strong tendency towards an increased level of subjectivity within the valuation process. This subjectivity is reflected by the valuation methods chosen, the partial lack of a structured investment approach as well as the impact of personal experience and gut feeling on valuation assumptions and indicators

    Block Circulant Decomposition of Cross-Correlation Matrix for Transmit MIMO Beamforming

    Get PDF
    This paper deals with the design of transmit probing signal under the trade-off between good target discrimination (low cross-correlation beam pattern) and beam pattern design (desired auto-correlation beam pattern) in a Multiple-Input- Multiple-Output (MIMO) radar configuration. The quartic optimization problem, with a finite alphabet constraint on the probing signal and using Quadrature Phase Shift Keying (QPSK) in a multiplexed antenna system, is solved through a Fourier series approximation of the desired beam pattern by exploiting a block circulant property of the transmit signal matrix. The mean square error between an ideal and the proposed crosscorrelation beam pattern is -35 dB enhancing the attractiveness of the proposed approach

    Discrimination of Angle-Doppler Signatures using Arbitrary Phase Center Motion for MIMO Radars

    Get PDF
    A novel Phase Center Motion (PCM) based technique for discriminating angle-Doppler signatures within Multiple-Input-Multiple-Output (MIMO) radars using Frequency Modulated Continuous Wave (FMCW) has been explored in this work. The PCM technique induces angle dependent Doppler shifts in the back-scattered signal, wherein a modified Doppler post processing for FMCW leads to joint angle-Doppler processing. Specifically, we intend to design unique spatialtemporal motion of the phase center on each individual MIMO radar channel in an effort to synthesize nearly orthogonal angle-Doppler signatures. Subsequently, we also develop a MIMO radar receiver design, which would be capable of discriminating between these induced angle-Doppler signatures. The asymptotic investigation provides a Bessel function characteristic. Simulation results demonstrate a significant side-lobe suppression of 8:5 dB for an individual PCM trajectory and 7 dB over distinct PCM trajectories, in an attempt towards realization of nearly orthogonal MIMO radar channels

    Random Phase Center Motion Technique for Enhanced Angle-Doppler Discrimination Using MIMO Radars

    Get PDF
    A random Phase Center Motion (PCM) technique is presented in this paper, based on Frequency Modulated Continuous Wave (FMCW) radar, in order to suppress the angle- Doppler coupling in Time Division Multiplex (TDM) Multiple- Input-Multiple-Output (MIMO) radar when employing sparse array structures. The presented approach exploits an apparently moving transmit platform or PCM due to spatio-temporal transmit array modulation. In particular, the work considers a framework utilizing a random PCM trajectory. The statistical characterization of the random PCM trajectory is devised, such that the PCM and the target motion coupling is minimal, while the angular resolution is increased by enabling the virtual MIMO concept. In more details, this paper discusses sidelobe suppression approaches within the angle-Doppler Ambiguity Function (AF) by introducing a phase center probability density function within the array. This allows for enhanced discrimination of multiple targets. Simulation results demonstrate the suppression angle- Doppler coupling by more than 30 dB, even though spatiotemporal transmit array modulation is done across chirps which leads usually to strong angle-Doppler coupling

    Single-gene resolution of diversity-driven overyielding in plant genotype mixtures

    Full text link
    In plant communities, diversity often increases productivity and functioning, but the specific underlying drivers are difficult to identify. Most ecological theories attribute positive diversity effects to complementary niches occupied by different species or genotypes. However, the specific nature of niche complementarity often remains unclear, including how it is expressed in terms of trait differences between plants. Here, we use a gene-centred approach to study positive diversity effects in mixtures of natural Arabidopsis thaliana genotypes. Using two orthogonal genetic mapping approaches, we find that between-plant allelic differences at the AtSUC8 locus are strongly associated with mixture overyielding. AtSUC8 encodes a proton-sucrose symporter and is expressed in root tissues. Genetic variation in AtSUC8 affects the biochemical activities of protein variants and natural variation at this locus is associated with different sensitivities of root growth to changes in substrate pH. We thus speculate that - in the particular case studied here - evolutionary divergence along an edaphic gradient resulted in the niche complementarity between genotypes that now drives overyielding in mixtures. Identifying genes important for ecosystem functioning may ultimately allow linking ecological processes to evolutionary drivers, help identify traits underlying positive diversity effects, and facilitate the development of high-performance crop variety mixtures

    Determination of the dead time of a stopped-flow fluorometer

    Full text link
    This investigation was carried out to develop a convenient alternative method for examining the performance and determining the dead time of a stopped-flow fluorometer. We examined the kinetics for the formation of the fluorescent Mg2+-8-hydroxyquinoline chelate in aqueous solutions. The reversible association of the Mg2+ ion with 8-hydroxyquinoline is a second-order process whose on and off rate constants are dependent on pH. We estimated that the Mg2+ ion chelate has a fluorescence quantum yield of 0.02 in aqueous solutions. Using this reaction we measured the dead time of a stopped-flow fluorometer at different pH values. Measurements of the dead time were found to be reproducible and accurate. The Mg2+-8-hydroxyquinoline reaction fulfills the requirements for a convenient test reaction for dead time measurement of stopped-flow fluorometers. Although the usefulness of the reaction is primarily to determine the dead times of stopped-flow instruments operating in the fluorescence mode, the reaction can also be used for testing an instrument operating in the absorbance mode.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27776/1/0000170.pd

    NFDI4Culture - Consortium for research data on material and immaterial cultural heritage

    Get PDF
    Digital data on tangible and intangible cultural assets is an essential part of daily life, communication and experience. It has a lasting influence on the perception of cultural identity as well as on the interactions between research, the cultural economy and society. Throughout the last three decades, many cultural heritage institutions have contributed a wealth of digital representations of cultural assets (2D digital reproductions of paintings, sheet music, 3D digital models of sculptures, monuments, rooms, buildings), audio-visual data (music, film, stage performances), and procedural research data such as encoding and annotation formats. The long-term preservation and FAIR availability of research data from the cultural heritage domain is fundamentally important, not only for future academic success in the humanities but also for the cultural identity of individuals and society as a whole. Up to now, no coordinated effort for professional research data management on a national level exists in Germany. NFDI4Culture aims to fill this gap and create a usercentered, research-driven infrastructure that will cover a broad range of research domains from musicology, art history and architecture to performance, theatre, film, and media studies. The research landscape addressed by the consortium is characterized by strong institutional differentiation. Research units in the consortium's community of interest comprise university institutes, art colleges, academies, galleries, libraries, archives and museums. This diverse landscape is also characterized by an abundance of research objects, methodologies and a great potential for data-driven research. In a unique effort carried out by the applicant and co-applicants of this proposal and ten academic societies, this community is interconnected for the first time through a federated approach that is ideally suited to the needs of the participating researchers. To promote collaboration within the NFDI, to share knowledge and technology and to provide extensive support for its users have been the guiding principles of the consortium from the beginning and will be at the heart of all workflows and decision-making processes. Thanks to these principles, NFDI4Culture has gathered strong support ranging from individual researchers to highlevel cultural heritage organizations such as the UNESCO, the International Council of Museums, the Open Knowledge Foundation and Wikimedia. On this basis, NFDI4Culture will take innovative measures that promote a cultural change towards a more reflective and sustainable handling of research data and at the same time boost qualification and professionalization in data-driven research in the domain of cultural heritage. This will create a long-lasting impact on science, cultural economy and society as a whole

    Novel Rodent Models for Macular Research

    Get PDF
    BACKGROUND: Many disabling human retinal disorders involve the central retina, particularly the macula. However, the commonly used rodent models in research, mouse and rat, do not possess a macula. The purpose of this study was to identify small laboratory rodents with a significant central region as potential new models for macular research. METHODOLOGY/PRINCIPAL FINDINGS: Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli, laboratory rodents less commonly used in retinal research, were subjected to confocal scanning laser ophthalmoscopy (cSLO), fluorescein and indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT) using standard equipment (Heidelberg Engineering HRA1 and Spectralis™) adapted to small rodent eyes. The existence of a visual streak-like pattern was assessed on the basis of vascular topography, retinal thickness, and the topography of retinal ganglion cells and cone photoreceptors. All three species examined showed evidence of a significant horizontal streak-like specialization. cSLO angiography and retinal wholemounts revealed that superficial retinal blood vessels typically ramify and narrow into a sparse capillary net at the border of the respective area located dorsal to the optic nerve. Similar to the macular region, there was an absence of larger blood vessels in the streak region. Furthermore, the thickness of the photoreceptor layer and the population density of neurons in the ganglion cell layer were markedly increased in the visual streak region. CONCLUSIONS/SIGNIFICANCE: The retinal specializations of Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli resemble features of the primate macula. Hence, the rodents reported here may serve to study aspects of macular development and diseases like age-related macular degeneration and diabetic macular edema, and the preclinical assessment of therapeutic strategies

    Placental Growth Factor Contributes to Micro-Vascular Abnormalization and Blood-Retinal Barrier Breakdown in Diabetic Retinopathy

    Get PDF
    OBJECTIVE: There are controversies regarding the pro-angiogenic activity of placental growth factor (PGF) in diabetic retinopathy (DR). For a better understanding of its role on the retina, we have evaluated the effect of a sustained PGF over-expression in rat ocular media, using ciliary muscle electrotransfer (ET) of a plasmid encoding rat PGF-1 (pVAX2-rPGF-1). MATERIALS AND METHODS: pVAX2-rPGF-1 ET in the ciliary muscle (200 V/cm) was achieved in non diabetic and diabetic rat eyes. Control eyes received saline or naked plasmid ET. Clinical follow up was carried out over three months using slit lamp examination and fluorescein angiography. After the control of rPGF-1 expression, PGF-induced effects on retinal vasculature and on the blood-external barrier were evaluated respectively by lectin and occludin staining on flat-mounts. Ocular structures were visualized through histological analysis. RESULTS: After fifteen days of rPGF-1 over-expression in normal eyes, tortuous and dilated capillaries were observed. At one month, microaneurysms and moderate vascular sprouts were detected in mid retinal periphery in vivo and on retinal flat-mounts. At later stages, retinal pigmented epithelial cells demonstrated morphological abnormalities and junction ruptures. In diabetic retinas, PGF expression rose between 2 and 5 months, and, one month after ET, rPGF-1 over-expression induced glial activation and proliferation. CONCLUSION: This is the first demonstration that sustained intraocular PGF production induces vascular and retinal changes similar to those observed in the early stages of diabetic retinopathy. PGF and its receptor Flt-1 may therefore be looked upon as a potential regulatory target at this stage of the disease
    corecore