
TO APPEAR IN PROCEEDINGS OF IEEE RADAR CONFERENCE 2017 i

Discrimination of Angle-Doppler Signatures using
Arbitrary Phase Center Motion for MIMO Radars

Christian Hammes∗ †, Yogesh Nijsure∗ , Bhavani Shankar M. R.∗, Udo Schröder‡ and Björn Ottersten∗
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Abstract—A novel Phase Center Motion (PCM) based
technique for discriminating angle-Doppler signatures within
Multiple-Input-Multiple-Output (MIMO) radars using Fre-
quency Modulated Continuous Wave (FMCW) has been explored
in this work. The PCM technique induces angle dependent
Doppler shifts in the back-scattered signal, wherein a modified
Doppler post processing for FMCW leads to joint angle-Doppler
processing. Specifically, we intend to design unique spatial-
temporal motion of the phase center on each individual MIMO
radar channel in an effort to synthesize nearly orthogonal angle-
Doppler signatures. Subsequently, we also develop a MIMO
radar receiver design, which would be capable of discriminating
between these induced angle-Doppler signatures. The asymptotic
investigation provides a Bessel function characteristic. Simulation
results demonstrate a significant side-lobe suppression of 8.5 dB
for an individual PCM trajectory and 7 dB over distinct
PCM trajectories, in an attempt towards realization of nearly
orthogonal MIMO radar channels.

I. INTRODUCTION

In conventional Synthetic Aperture Radars (SAR), the con-
cept of Phase Center Motion (PCM) has been commonly
referred to as the Displaced Phase Center Antenna (DPCA)
technique, wherein the phase center over the radar antenna
array is displaced in the opposite direction of the radar
platform motion in an effort to keep the clutter statistically
constant, which could be canceled subsequently from the radar
back-scatter, as shown in works like [1], [2] and [3]. Works
like [1] have used the aforementioned DPCA technique within
airborne SAR radars. Specifically, an algorithm which uses the
DPCA principle has been employed in order to reconstruct the
linear sampling of the aperture.
Time division multiplex (TDM) Multiple-Input-Multiple-
Output (MIMO) concept has been employed by activating a
single pair of transmitter and receiver antenna element within
the array to achieve orthogonality with respect to angle of
arrival [4]. Within this approach, the authors have introduced
different antenna switching schemes each yielding a single
linear PCM design. These schemes exploit angle coding to
achieve orthogonality that is necessary for the realization of the
virtual MIMO approach. A virtual MIMO array is produced by
the spatial convolution of the real transmit and receive antenna
array which gives a much larger array while physically using
smaller array size [5].
Time modulated arrays have been investigated in works like
[6]-[10] with an objective of suppressing the side-lobe levels
within the radiation beam pattern of the radar transmitter.
Works like [6] and [7] have presented the bidirectional and
unidirectional PCM approaches respectively for the uniform

linear array. In [8], an algorithm has been presented which uses
optimization techniques in order to determine the amplitudes
of the signal over a time modulated linear antenna array. Pulse
shifting techniques within a time modulated array have been
shown in [9]. The authors in [10] have been presented a study
on FMCW pulses in time modulated arrays.
Works on time modulated arrays are equivalent to linear PCM
approaches [6]-[10]. In contrast to the prior-art on linear PCM
for obtaining low side lobe level, we introduce the concept of
PCM trajectory, which describes the spatial-temporal motion
of the phase center within the array structure. The current
work addresses arbitrary nonlinear PCM trajectories in order
to enhance angle-Doppler discrimination by suppressing the
angle-Doppler coupling problem [4]. Moreover, multiple PCM
trajectory design has not been well investigated within the
existing literature; consequently in this work we intend to
design and exploit multiple PCM trajectories in order to
achieve diversity over the target back-scatter to realize a
MIMO radar set-up.
The contributions of the proposed work include:

• Enhanced unambiguous target discrimination using vir-
tual MIMO and an arbitrary PCM trajectory based signal
design.

• Design of a correlation based PCM trajectory filter at
the receiver in addition to the conventional range-Doppler
processing at the FMCW radar receiver. The same has
been demonstrated using the sinusoidal PCM trajectory.

• Realization of the MIMO radar paradigm by synthesizing
multiple PCM trajectories which induce nearly orthogo-
nal angle-Doppler signatures.

• For the sinusoidal PCM, analytical characterization of the
ambiguity function is derived under the assumption of
large number of chirps within a coherent processing in-
terval. This characterization highlights various properties
of the sinusoidal PCM including side-lobe suppression.

In Section II, the signal model is introduced. Section III
describes and elaborates the proposed method with reference
to sinusoidal PCM as a special case and its asymptotic
characterization. Simulation results with regards to the angle-
Doppler discrimination and the achievable orthogonality be-
tween distinct MIMO channels through use of the proposed
PCM trajectory design has been presented in Section IV.
Section V contains the conclusion and remarks for the full
paper extension.
Throughout the work we use, ‖·‖ which denotes the l2-norm.
[·]η,γ defines a matrix entry with row index η and column
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Fig. 1. System diagram

index γ. The notation [·]η indicates a column vector element
with the index η. The transpose is denoted as (·)T and the
conjugate transpose is denoted as (·)H , respectively. The arg
operator provides the angle between the real and imaginary
part of a complex number. The symbols C, Z and R define
the set of complex, integer and real numbers.

II. SYSTEM MODEL FOR PHASE CENTER MOTION

Any radiating object at a large distance to the observer is
seen by the latter as a point source. The origin of such a point
source is called phase center [11]. The PCM approach exploits
the effect of a phase trajectory or variations induced in the
position of the phase center by appropriate signal design. The
target motion and its angular positions then transform this tra-
jectory. Appropriate receiver processing extracts unambiguous
target angle-Doppler signatures from the transformed phase
center trajectory.
Figure 1 depicts a conventional Frequency Modulated Con-

tinuous Wave (FMCW) system used for the PCM approach,
where chirp sequences with the carrier frequency f0 together
with FMCW modulator bandwidth B and chirp duration Tc
are used [14]. The N transmit antenna elements are mounted
on a uniform linear array along the x-direction with a transmit
antenna inter-element spacing dT , while the M receive antenna
elements are mounted on a uniform linear array along the x-
direction with a receive antenna inter-element spacing dR. The
PCM is enabled within the array structure by an appropriate
choice of transmitter Amplitude Modulation (AM) weights and
receiver coefficients. We further assume that these coefficients
are constant over a chirp, but vary across chirps. This translates
into a phase center which is constant within the chirps but
varies across them. Letting ic to be the chirp index, the
corresponding AM weights are denoted by an(ic) for the n-
th element and wm(ic) denotes the receiver weighting for the
m-th element. This is clearly depicted in figure 1. Due to
the PCM, a Doppler shift in addition to the target Doppler
shift appears which necessitates a different transformation for
processing other than the conventional Fast Fourier Transform
(FFT) [14]. Therefore, the modified transformation, which is
illustrated in Figure 1 as the matrix M̂, is another contribution
of this paper. Since the matrix M̂ is a function of the PCM
trajectory, the matrix represents a trajectory matched filter-
bank in order to facilitate a two dimensional target angle-
Doppler image.

A. System Model

The signal vector at the output of the transmit antenna array
during the time instance t of the chirp ic, denoted by uic(t) ∈
CN×1, is the product of the Frequency Modulated Continuous
Wave (FMCW) modulator and the transmit AM vector a(ic) =
[a1(ic) · · · aN (ic)]

T ∈ CN×1,

uic(t) = a(ic) exp

(
j

(
ω0t+

B

Tc
t2
))

. (1)

In (1), ω0 = 2πf0 denotes the carrier angular frequency, B
is the FMCW bandwidth, Tc is the sweep duration and j =√
−1. Subsequently, the M×N signal propagation paths with

respect to the κ-th target can be described by the channel
matrix Sκ ∈ CM×N and time varying scalar sκ(ic). A detailed
target model is described in Section II-B. Similar to [4], the
paper focuses on an ideal case where the receiver noise is
neglected in the derivation. A sensitivity analysis with regards
to noise is investigated numerically in Section IV. The receive
signal vector vic(t) ∈ CM×1 takes the form,

vic(t) =

K∑
κ=1

sκ(t)Sκuic(t− tκ). (2)

The signal round trip delay for the κ-th target is defined as
tκ = 2rκ

c0
, where rκ is the radial distance as shown in Section

II-B and c0 denotes the speed of light. The signal vic(t) is
down-mixed with the local oscillator and discretised with the
sampling time Ts. The resulting samples are weighted by the
time dependent weight vector w(ic) ∈ CM×1. In addition to
the phase center, the target position is also assumed to be
constant within one chirp and remains in one range resolution
bin within the coherent processing interval.
The receive signal for Ic chirps, sampled at Is samples
per chirp, can be compactly expressed as a Ic × Is matrix
Y ∈ CIc×Is , where the matrix entries are [Y]ic,is =

wT (ic)vic(isTs) exp
(
−j
(
ω0isTs + B

Tc
(isTs)

2
))

. The ma-
trix Y can be expressed in terms of a range vector µκ ∈ CIs×1
and Doppler vector νκ ∈ CIc×1 with the entries [µκ]is =
exp (−jρκTsis) and [νκ]ic = cκsκ(ic)w

T (ic)Sκa(ic) as,

Y =

K∑
κ=1

νκµ
T
κ . (3)

The complex constant cκ = exp (j(ω0tκ + B
Tc
t2κ)) is a result

of the FMCW down-mixing and the angular frequency corre-
sponding to the range information is denoted as ρκ = 4 BTc

rκ
c0

.
Referring to (3), the range information is separable from PCM
and Doppler information.

B. Target Model

The target as well as the antenna elements are assumed
to be point-like isotropic radiators. For a considered MIMO
configuration, there are N×M propagation paths. The distance
dκmn between the n-th transmit element and the m-th receive
element is defined as the distance from n-th transmit element
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Fig. 2. Virtual MIMO PCM for sinusoidal trajectory

to the κ-th target plus the distance from the κ-th target to the
m-th receive antenna element [12] and takes the form,

dκmn = ‖xκ − xm‖+ ‖xκ − xn‖
≈ 2rκ + ((n− 1)dT + (m− 1)dR) sin(φκ), (4)

where xκ is the κ-th target position in Cartesian coordinates,
xn and xm are the positions of the transmit and receive
antenna elements in Cartesian coordinates, rκ and φκ denotes
the κ-th target position in spherical coordinates. The first
antenna element is assumed to be the origin of both coordinate
systems as depicted in Figure 2. The distance dκmn, when mul-
tiplied by the free space wave number k0, provides the phase
information. The wavelength λ corresponds to the free space
wave number k0 = 2π

λ which then again corresponds to speed
of light and the carrier frequency f0 = c0

λ . Using (4), the phase
information can be split into a radial 2k0rκ and angular phase
term ϕκmn = k0d

κ
mn = k0 sin(φκ)((n−1)dT+(m−1)dR). The

target radar cross section σκ together with the target Doppler
shift δκ and radial phase term constitute the time varying scalar
sκ(ic), which can be presented as [12],

sκ(ic) = σκ exp (jδκTcic). (5)

The M ×N MIMO propagation channel matrix Sκ ∈ CM×N
is obtained as

[Sκ]m,n = exp (jϕκmn). (6)

III. PROPOSED METHOD AND SINUSOIDAL PCM
The proposed method is based on a virtual MIMO paradigm

which is obtained by the spatial convolution of the sparse
transmit array with a filled receiver array as depicted in Figure
2. In particular, the proposed method uses a novel choice of
AM weights and receiver processing to enable and benefit from
a continuous PCM within the virtual array.

A. Phase Center Motion Framework

The MIMO channel matrix Sκ, together with the transmit
and receive weight vectors a(ic) and w(ic) contain the phase
center trajectory information. Let kxκ = k0 sin(φκ) denotes
the propagation vector for the κ-th target in the x-direction.
The composite phase center χ(ic), as seen at the receiver,
is defined as the group delay of transmit and receive array
group factor. If the weighting vectors w(ic) and a(ic) fit the
function of a fractional delay filter [13], like a truncated sinc-
function, the phase center χ(ic) can take any position within

the array structure to a good approximation. Since the matrix
Sκ is separable into transmit and receive components, the
phase center χ(ic) is the superposition of the transmit α(ic)
and receive β(ic) phase center which enables the application
of virtual MIMO concept as shown in Section III-B,

χ(ic) =
∂

∂kxκ
arg
(
wT (ic)Sκa(ic)

)
(7)

≈ ∂

∂kxκ
arg
(
ejk

x
κ(α(ic)+β(ic))

)
= α(ic) + β(ic).

If the weighting of transmit and receive array yields a
pure phase center motion without beam pattern shaping,
the Doppler vector entries can be simpified as [νκ]ic =
σκcκ exp(j(δκTcic + kxκχ(ic))) and (3) simplifies to,

Y = MΛF. (8)

The unique matrix M ∈ CIc×K with the entries [M]ic,κ =
1√
Ic

exp(j(δκTcic + kxκχ(ic))) spans the column space of
Y, which contains the target angle and Doppler information
as well as the phase center trajectory. The unique matrix
F ∈ CK×Is with the entries [F]κ,is = 1√

Is
exp(jρκTsis)

spans the row space of Y which contains the target range infor-
mation. The diagonal matrix Λ =

√IcIsdiag(cκσκ) ∈ CK×K
represents the energy from the κ-th target.
Therefore, the matrix M is parametrized by the target Doppler
shifts δκ and target angular position φκ or kxκ, respectively.
The resolution with regards to Doppler is limited by the
inverse coherent processing interval ∆δ = 2π

IcTc [12] and
the angular resolution has the limit of the inverse virtual
array size ∆φ = 4π

(N(M−1)+1)λ [5]. A grid for angle and
Doppler with Ic × (N(M − 1) + 1) bins can be defined
based on the resolution limits. Therefore, the index q ∈
[1 · · · Ic] represents the Doppler dimension and the index
p ∈ [1 · · · (M − 1)N + 1] the angular dimension. The reso-
lution of the range, associated with the angular frequency, is
limited by the chirp time ∆ρ = 2π

Tc
. The index l ∈ [1 · · · Is]

corresponds with the range dimension. A target can only be
resolved by the resolution limits and the total number of
K targets and their positions are unknown. The trajectory
matched filter matrices M̂ ∈ CIc×Ic(N(M−1)+1) with the
entries

[
M̂
]
(pIc+q),ic

= 1
Ic exp(j((q − 1)∆δTcic + (p −

1)∆φχ(ic))) and F̂ ∈ CIs×Is with the entries
[
F̂
]
l,is

=

1
Is exp(j(l− 1)∆ρTsis) are designed in an effort to cover all
possible combinations within the resolution limits. The filter-
bank output Λ̂ ∈ CIc(N(M−1)+1)×Is contains the elements of
an angle-Doppler-Range plot,

Λ̂ = M̂HYF̂H . (9)

The proposed method is to design the phase center trajectory
χ(ic) such that each row of M̂ is nearly orthogonal to each
other. The target discrimination with regards to angle-Doppler
then becomes enhanced. Since range and Doppler processing
are separable, the next section just deals with the design of M̂.
In case of multiple trajectories, there are multiple M̂, which
is discussed in the next section for sinusoidal trajectories.
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B. Sinusoidal Phase Center Motion using Virtually Filled
Arrays

In order to design a matrix M̂ that is, to a good approxima-
tion row orthogonal, the PCM is adjusted to a sinusoidal trajec-
tory χ(ic) = x0

2 sin
(

2π
Ic ic

)
, where x0 = (N(M − 1) + 1)λ2 is

the total array size. The AM is assumed to be binary wherein
the transmit antenna elements can either be switched on or
off. As a consequence of the binary AM condition and the
arrangement of transmit antenna elements as illustrated in
Figure 1, the transmit phase center is restricted to discrete
values with the inter-element spacing, such that the transmit
phase center α(ic) = ε(ic)(M − 1)dR for ε ∈ Z where
0 ≤ ε ≤ N − 1. Therefore, the transmit phase center α(ic) is
restricted to discrete values, which is a reasonable assumption
for practical applications. The receive processing is performed
in the digital domain and therefore the receive weight vector
w(ic) can be easily adjusted to the coefficients of a fractional
delay filter. However, for the sinusoidal example, a truncated
sinc-function is used for receive PCM, thus the weights
are restricted to real values between minus one and one
w(ic) ∈ RM×1 where −1 ≤ [w]ζ ≤ 1. The receive phase
center position, β(ic) is bounded by the receive array size, but
it can take on every real value within these bounds β(ic) ∈ R
where 0 ≤ β(ic) ≤ (M−1)λ2 by fitting a sinc-function, where
the function maximum lies within the receive array bounds.
The superposition of receive and transmit phase center enables
the total phase center χ(ic) = α(ic) + β(ic) to take on every
value within sparse array structure in Figure 2 even though
the antenna element arrangement is sparse,

[w]m (ic) = sinc

(
m− β(ic)

dR

)
(10)

= sinc

(
m− χ(ic)− α(ic)

dR

)
.

The array appears to be filled and therefore the virtual MIMO
concept is enabled. Furthermore, the sinusoidal PCM and
the corresponding transmit AM vector a(ic) and the receive
weighting vector w(ic) are completely determined by the
assumptions made in this section, like binary AM, real receive
weights and array structure.

C. Asymptotic Bessel Function Characteristic for Sinusoidal
PCM

The asymptotic consideration of sinusoidal PCM yields
a closed form ambiguity function expression for analytical
investigation. The trajectory matched filter output can be
analytically investigated with respect to target discrimination
and the associated resolution and side lobe level. Furthermore,
asymptotic formulas for sinusoidal PCM are providing an
analyzing tool for orthogonality with respect to multiple PCM
trajectories.
In order to derive the asymptotic formula, equation (9) can
be separated using (3). Therefore, the angle-Doppler trajectory

matched filter output j̃ ∈ CIc(N(M−1)+1)×1 can be formulated
as,[̃

j
]
(pIc+q)

=

[
K∑
κ=1

M̂νκ

]
(pIc+q)

(11)

=

K∑
κ=1

cκσκ

Ic

Ic∑
ic=0

exp(j(((q − 1)∆δ − δκ)Tcic

+ ((p− 1)∆φ − kxκ)χ(ic))).

For the sake of illustration, the vector j̃ is rearranged to
a matrix J̃ ∈ CIc×N(M−1)+1, where the column space
represents the Doppler domain and the row space represents
the angular domain. Using the aforementioned matrix notation
and substituting ε(q) = ((q − 1)∆δ − δκ)TcIc2π and γ(p) =
x0

2 ((p− 1)∆φ − kxκ), equation (11) can be written as follows
by inserting the sinusoidal PCM, where the trajectory angular
frequency is defined as ωT = 2π

IcTc ,[
J̃
]
p,q

=

K∑
κ=1

cκσκ

IcTc
(12)

×
Ic∑
ic=0

exp(j(ε(q)ωT icTc + γ(p) sin(ωT icTc)))Tc.

The coherent processing interval can be defined as
TCPI = TcIc. Further, the definition Ĵκ(ε(q), γ(p)) =

1
TCPI

∑Ic
ic=0 exp(j(ε(q)ωTTcic+γ(p) sin(ωT icTc)))Tc yields,[

J̃
]
p,q

=

K∑
κ=1

cκσκĴκ(ε(q), γ(p)). (13)

The asymptotic assumption is that the chirp duration goes to
zero Tc → 0, while the coherent processing interval keeps
constant TCPI = const,

Jκ(ε(q), γ(p)) = lim
Tc→0

Ĵκ(ε(q), γ(p)) (14)

=

∫ TCPI

0

exp
(
j
(
ε (q) 2π

TCPI
t+ γ(p) sin

(
2π
TCPI

t
)))

TCPI
dt.

Equation (14) yields a Bessel function of the first kind as the
asymptotic result for the κ-th target. The asymptotic trajectory
matched filter output J is the superposition of shifted first kind
Bessel functions,

[J]p,q = lim
Tc→0

[
J̃
]
p,q

=

K∑
κ=1

cκσκJκ(ε(q), γ(p)). (15)

The squared L2-norm of equation (15) leads to the angle-
Doppler ambiguity function. Targets in different resolutions
bin can be seen as independent, therefore the squared matched
filter output can be well approximated by the superposition of
single target responses,∥∥∥[J]p,q

∥∥∥2 ≈ K∑
κ=1

‖cκσκJκ(ε(q), γ(p))‖2 . (16)

Another important aspect is the orthogonal property of Bessel
function with respect to angular frequency ωT . In terms of
PCM does it mean, that the sinusoidal trajectory has an integer
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Fig. 3. Upper Plot: Angle-Doppler ambiguity function for sinusoidal trajec-
tory with a single target located at angle φ1 = 20◦ and velocity v1 = 10 m/s
with a Side Lobe Level of −8.5 dB Lower Plot: Filter bank output for
trajectory mismatched with respect to angular frequency ωT of the sinusoidal
PCM; signal suppression of 7 dB

multiple of the angular frequency ωT . The orthogonality prop-
erty just holds for Bessel functions of the same order, therefore
sinusoidal trajectories with different velocities are only nearly
orthogonal. The asymptotic Bessel function properties are
confirmed by simulation results.

IV. SIMULATION RESULTS

The simulation is carried out with an array configuration
as depicted in Figure 2 with N = 4 transmit and M = 4
receive antennas. The carrier frequency f0 is set to 77 GHz.
The total number of chirps is Ic = 512 with a chirp duration
of Tc = 10 µs. The FMCW angular bandwidth B is set to
4π GHz. The sampling time is Ts = 4π

B with a total intra
chirp sampling number of Is = 10000. While the first target
is located at the angle φ1 = 20◦, range r1 = 10 m and has
the velocity of v1 = 10 m/s, the second target is located
at the angle φ2 = −5◦, range r2 = 10 m and has the
velocity of v2 = 0 m/s. The signal to noise ratio is set to
SNR = −10 dB.
The upper plot in Figure 3 shows the ambiguity function for

an angle-Doppler plot in dB-scale. A sharp peak appears at the
target location in this plane, which enables an unambiguous
angle-Doppler parameter estimation. The Side Lobe Level
(SLL = −8.5 dB) is a promising result demonstrated by our
proposed PCM signal design.
While the angle-Doppler ambiguity function result showed

the potential of a single trajectory, we now consider multi-
ple trajectories obtained by superposition of sinusoidal PCM
trajectories. The component trajectories have different angular
frequencies, which can be chosen towards obtaining orthogo-
nality in MIMO radars. In particular, the lower plot in Figure
3 illustrates the output of a mismatched trajectory filter. The
filter trajectory has twice the angular frequency of the input

Fig. 4. Upper Plot: Angle-Doppler ambiguity function for sinusoidal tra-
jectory with two targets, one located at angle φ1 = 20◦ and velocity
v1 = 10 m/s and the other at angle φ2 = −5◦ and velocity v5 = 0 m/s
Lower Plot: Filter bank output for trajectory mismatched with respect to
angular frequency ωT of the sinusoidal PCM for the two target case

Fig. 5. Ambiguity function and its asymptotic Bessel characteristic for a
single target located at angle φ1 = 20◦ and velocity v1 = 10 m/s

trajectory and therefore mismatched in terms of asymptotic
Bessel considerations. The input signal is suppressed by 7 dB,
which indicates approximate orthogonality of the trajectories
and hence independent processing of related signals. Thus the
trajectory approach enables a framework for exploiting a new
degree of freedom towards achieving orthogonality in MIMO
radars.
Figure 4 illustrates the two target case matched (upper plot

figure 4) and mismatched (lower plot figure 4) sinusoidal
trajectory. The appropriate target peak and its side-lobes
appear as a superposition of single target ambiguity functions
and therefore the two target case confirms the superposition
principle in (16). The trajectory mismatched filter output
performance is similar to the single target case with regards
to the input signal suppression of approximately 7 dB.
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Figure 5 depicts a sector of figure 3 in linear scale and in
three dimensional view. As derived in subsection III-C, the
ambiguity function asymptotes has a Bessel function charac-
teristic where the angular domain represents the argument and
the velocity domain represents the order of first kind Bessel
functions. Figure 5 illustrates clearly the Bessel shape and the
symmetry properties. Therefore, the simulation result confirms
the asymptotic behavior.
Furthermore, the trajectory matched filter approach provides
good properties with regards to noise suppression. The rather
low SNR has almost no influence on the ambiguity function
for the chosen set of parameters.

V. CONCLUSION

This work proposes a novel radar waveform design approach
based on arbitrary PCM trajectories within MIMO radar
paradigm. The primary objective of this design approach is
to achieve Thumbtack like response of MIMO radar am-
biguity function in addition to accomplishing orthogonality
over distinct MIMO radar channels. The attractiveness of the
approach is exemplified by the design of sinusoidal trajectories
which exhibits an asymptotic Bessel behavior for the angle-
Doppler ambiguity function. This behavior allows for well-
known characterization of the ambiguity function allowing
precise evaluation of side-lobe levels and corroborating or-
thogonality. The attractiveness of this approach, in addition
to unambiguous target discrimination and enableing of nearly
orthogonal MIMO channels, lies in the linear matched filtering
at the receiver which leads to fairly good noise suppression.

ACKNOWLEDGMENT

The authors would like to thank Dr. Thiemo Spielmann,
IEE Contern, for his support. This work was supported by the
National Research Fund, Luxembourg under AFR grant for
Ph.D. project (Reference 11274469) on Enhancing Angular
Resolution in Radar Through Dynamic Beam Steering and
MIMO.

REFERENCES

[1] G. Krieger, N. Gebert, A. Moreira, “Unambiguous SAR Signal Recon-
struction From Nonuniform Displaced Phase Center Sampling,” IEEE
Geosci. Remote Sens. Lett., vol. 1, no. 4, October 2004.

[2] D. Cerutti-Maori, I. Sikaneta, “A Generalization of DPCA Processing for
Multichannel SAR/GMTI Radars,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 1, January 2013.

[3] B. Dawidowicz, K. S. Kulpa, M. Malanowski, J. Misiurewicz, P. Sam-
czynski, M. Smolarczyk, “DPCA Detection of Moving Targets in Air-
borne Passive Radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 48, no.
2, April 2012.

[4] D. Zoeke, A. Ziroff, “Phase Migration Effects in Moving Target Local-
ization Using Switched MIMO Arrays,” in Proceedings of the 12th
European Radar Conference, September 2015.

[5] D. Bliss, K. Forsythe, G. Fawcett, “MIMO Radar: Resolution, Perfor-
mance, and Waveforms,” in Proceedings of ASAP, 2006.

[6] S. Yang, Y.-B. Gan, P. Khiang Tan, “Linear Antenna Arrays With
Bidirectional Phase Center Motion,” IEEE Trans. Antennas Propag.,
vol. 53, no. 5, April 2005.

[7] G. Li, S. Yang, Z. Nie, “Direction of Arrival Estimation in Time
Modulated Linear Array With Unidirectional Phase Center Motion,”
IEEE Trans. Antennas Propag., vol. 58, no. 4, 2010.

[8] S. Yang, Y.-B. Gan, A. Qing, “Sideband Suppression in Time-Modulated
Linear Arrays by the Differential Evolution Algorithm,” IEEE Antennas
Wireless Propag. Lett., vol. 1, 2002.

[9] L. Poli, P. Rocca, L. Manica, A. Massa, “Pattern synthesis in time-
modulated linear array through pulse shifting,” IET Microwave, Antennas
and Propagation, February 2009.

[10] J. Guo, S. Yang, S.-W. Qu, Jun Hu, Zaiping Nie, “A Study on Linear
Frequency Modulation Signal Transmission by 4-D Antenna Arrays,”
IEEE Trans. Antennas Propag., vol. 63, no. 12, December 2015.

[11] C. A. Balanis, “Antenna Theory- Analysis and Design, third edition,”
Wiley ISBN: 0-471-66782-X, 2005.

[12] P. Setlur and M. Rangaswamy, “Waveform Design for Radar STAP in
Signal Dependent Interference,” IEEE Trans. Signal Process., vol. 64,
no. 1, January 2016.
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