901 research outputs found

    Converting sporting capacity to entrepreneurial capacity: A process perspective

    Get PDF
    Managing a personal sporting career and conducting an entrepreneurial initiative are two vitally connected processes. Most athletes require a second career and many engage in entrepreneurship. Research on the similarities and differences of the sports career management process and entrepreneurial process with a special emphasis on the necessary capacities will have a ready audience among practitioners. This study begins the task of closing a surprising gap. In entrepreneurship literature, there is (1) growing research on entrepreneurial process and entrepreneurial capacity as the key driver; (2) strong work in generic, descriptive and explanatory modelling of process as a whole and capacity as a sub-process; and (3) the presence of a generic model of entrepreneurial process based of what distinguishes entrepreneurial capacity from other human capacities. In sports management literature, these research strands are virtually absent. The study indicates how the deficiency might be remedied

    2-Sulfonylpyrimidines as Privileged Warheads for the Development of S. aureus Sortase A Inhibitors

    Get PDF
    Staphylococcus aureus is one of the most frequent causes of nosocomial and community-acquired infections, with emerging multiresistant isolates causing a significant burden to public health systems. We identified 2-sulfonylpyrimidines as a new class of potent inhibitors against S. aureus sortase A acting by covalent modification of the active site cysteine 184. Series of derivatives were synthesized to derive structure-activity relationship (SAR) with the most potent compounds displaying low micromolar K(I) values. Studies on the inhibition selectivity of homologous cysteine proteases showed that 2-sulfonylpyrimidines reacted efficiently with protonated cysteine residues as found in sortase A, though surprisingly, no reaction occurred with the more nucleophilic cysteine residue from imidazolinium-thiolate dyads of cathepsin-like proteases. By means of enzymatic and chemical kinetics as well as quantum chemical calculations, it could be rationalized that the S ( N )Ar reaction between protonated cysteine residues and 2-sulfonylpyrimidines proceeds in a concerted fashion, and the mechanism involves a ternary transition state with a conjugated base. Molecular docking and enzyme inhibition at variable pH values allowed us to hypothesize that in sortase A this base is represented by the catalytic histidine 120, which could be substantiated by QM model calculation with 4-methylimidazole as histidine analog

    Lipidation of Pneumococcal Antigens Leads to Improved Immunogenicity and Protection

    Get PDF
    Streptococcus pneumoniaeinfections lead to high morbidity and mortality rates worldwide.Pneumococcal polysaccharide conjugate vaccines significantly reduce the burden of disease but havea limited range of protection, which encourages the development of a broadly protective protein-basedalternative. We and others have shown that immunization with pneumococcal lipoproteins that lackthe lipid anchor protects against colonization. Since immunity againstS. pneumoniaeis mediatedthrough Toll-like receptor 2 signaling induced by lipidated proteins, we investigated the effects ofa lipid modification on the induced immune responses in either intranasally or subcutaneouslyvaccinated mice. Here, we demonstrate that lipidation of recombinant lipoproteins DacB and PnrAstrongly improves their immunogenicity. Mice immunized with lipidated proteins showed enhancedantibody concentrations and different induction kinetics. The induced humoral immune responsewas modulated by lipidation, indicated by increased IgG2/IgG1 subclass ratios related to Th1-typeimmunity. In a mouse model of colonization, immunization with lipidated antigens led to a moderatebut consistent reduction of pneumococcal colonization as compared to the non-lipidated proteins,indicating that protein lipidation can improve the protective capacity of the coupled antigen. Thus,protein lipidation represents a promising approach for the development of a serotype-independentpneumococcal vaccine

    Borrelia valaisiana resist complement-mediated killing independently of the recruitment of immune regulators and inactivation of complement components

    Get PDF
    Spirochetes belonging to the Borrelia (B.) burgdorferi sensu lato complex differ in their resistance to complement-mediated killing, particularly in regard to human serum. In the present study, we elucidate the serum and complement susceptibility of B. valaisiana, a genospecies with the potential to cause Lyme disease in Europe as well as in Asia. Among the investigated isolates, growth of ZWU3 Ny3 was not affected while growth of VS116 and Bv9 was strongly inhibited in the presence of 50% human serum. Analyzing complement activation, complement components C3, C4 and C6 were deposited on the surface of isolates VS116 and Bv9, and similarly the membrane attack complex was formed on their surface. In contrast, no surface-deposited components and no aberrations in cell morphology were detected for serum-resistant ZWU3 Ny3. While further investigating the protective role of bound complement regulators in mediating complement resistance, we discovered that none of the B. valaisiana isolates analyzed bound complement regulators Factor H, Factor H-like protein 1, C4b binding protein or C1 esterase inhibitor. In addition, B. valaisiana also lacked intrinsic proteolytic activity to degrade complement components C3, C3b, C4, C4b, and C5. Taken together, these findings suggest that certain B. valaisiana isolates differ in their capability to resist complement-mediating killing by human serum. The molecular mechanism utilized by B. valaisiana to inhibit bacteriolysis appears not to involve binding of the key host complement regulators of the alternative, classical, and lectin pathways as already known for serum-resistant Lyme disease or relapsing fever borreliae

    AMACO is a component of the basement membrane-associated fraser complex

    Get PDF
    Fraser syndrome (FS) is a phenotypically variable, autosomal recessive disorder characterized by cryptophthalmus, cutaneous syndactyly, and other malformations resulting from mutations in FRAS1, FREM2, and GRIP1. Transient embryonic epidermal blistering causes the characteristic defects of the disorder. Fras1, Frem1, and Frem2 form the extracellular Fraser complex, which is believed to stabilize the basement membrane. However, several cases of FS could not be attributed to mutations in FRAS1, FREM2, or GRIP1, and FS displays high clinical variability, suggesting that there is an additional genetic, possibly modifying contribution to this disorder. An extracellular matrix protein containing VWA-like domains related to those in matrilins and collagens (AMACO), encoded by the VWA2 gene, has a very similar tissue distribution to the Fraser complex proteins in both mouse and zebrafish. Here, we show that AMACO deposition is lost in Fras1-deficient zebrafish and mice and that Fras1 and AMACO interact directly via their chondroitin sulfate proteoglycan (CSPG) and P2 domains. Knockdown of vwa2, which alone causes no phenotype, enhances the phenotype of hypomorphic Fras1 mutant zebrafish. Together, our data suggest that AMACO represents a member of the Fraser complex

    The All-Data-Based Evolutionary Hypothesis of Ciliated Protists with a Revised Classification of the Phylum Ciliophora (Eukaryota, Alveolata)

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The file attached is the published version of the article

    The Effect of Epstein-Barr Virus Latent Membrane Protein 2 Expression on the Kinetics of Early B Cell Infection

    Get PDF
    Infection of human B cells with wild-type Epstein-Barr virus (EBV) in vitro leads to activation and proliferation that result in efficient production of lymphoblastoid cell lines (LCLs). Latent Membrane Protein 2 (LMP2) is expressed early after infection and previous research has suggested a possible role in this process. Therefore, we generated recombinant EBV with knockouts of either or both protein isoforms, LMP2A and LMP2B (Δ2A, Δ2B, Δ2A/Δ2B) to study the effect of LMP2 in early B cell infection. Infection of B cells with Δ2A and Δ2A/Δ2B viruses led to a marked decrease in activation and proliferation relative to wild-type (wt) viruses, and resulted in higher percentages of apoptotic B cells. Δ2B virus infection showed activation levels comparable to wt, but fewer numbers of proliferating B cells. Early B cell infection with wt, Δ2A and Δ2B viruses did not result in changes in latent gene expression, with the exception of elevated LMP2B transcript in Δ2A virus infection. Infection with Δ2A and Δ2B viruses did not affect viral latency, determined by changes in LMP1/Zebra expression following BCR stimulation. However, BCR stimulation of Δ2A/Δ2B cells resulted in decreased LMP1 expression, which suggests loss of stability in viral latency. Long-term outgrowth assays revealed that LMP2A, but not LMP2B, is critical for efficient long-term growth of B cells in vitro. The lowest levels of activation, proliferation, and LCL formation were observed when both isoforms were deleted. These results suggest that LMP2A appears to be critical for efficient activation, proliferation and survival of EBV-infected B cells at early times after infection, which impacts the efficient long-term growth of B cells in culture. In contrast, LMP2B did not appear to play a significant role in these processes, and long-term growth of infected B cells was not affected by the absence of this protein. © 2013 Wasil et al

    Burden of paediatric Rotavirus Gastroenteritis (RVGE) and potential benefits of a universal Rotavirus vaccination programme with a pentavalent vaccine in Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rotavirus is the most common cause of gastroenteritis in young children worldwide. The aim of the study was to assess the health outcomes and the economic impact of a universal rotavirus vaccination programme with RotaTeq, the pentavalent rotavirus vaccine, versus no vaccination programme in Spain.</p> <p>Methods</p> <p>A birth cohort was followed up to the age of 5 using a cohort model. Epidemiological parameters were taken from the REVEAL study (a prospective epidemiological study conducted in Spain, 2004-2005) and from the literature. Direct and indirect costs were assessed from the national healthcare payer and societal perspectives by combining health care resource utilisation collected in REVEAL study and unit costs from official sources. RotaTeq per protocol efficacy data was taken from a large worldwide rotavirus clinical trial (70,000 children). Health outcomes included home care cases, General Practioner (GP)/Paediatrician, emergency department visits, hospitalisations and nosocomial infections.</p> <p>Results</p> <p>The model estimates that the introduction of a universal rotavirus vaccination programme with RotaTeq (90% coverage rate) would reduce the rotavirus gastroenteritis (RVGE) burden by 75% in Spain; 53,692 home care cases, 35,187 GP/Paediatrician visits, 34,287 emergency department visits, 10,987 hospitalisations and 2,053 nosocomial infections would be avoided. The introduction of RotaTeq would avoid about 76% of RVGE-related costs from both perspectives: €22 million from the national health system perspective and €38 million from the societal perspective.</p> <p>Conclusions</p> <p>A rotavirus vaccination programme with RotaTeq would reduce significantly the important medical and economic burden of RVGE in Spain.</p
    • …
    corecore