79 research outputs found

    Linear response subordination to intermittent energy release in off-equilibrium aging dynamics

    Full text link
    The interpretation of experimental and numerical data describing off-equilibrium aging dynamics crucially depends on the connection between spontaneous and induced fluctuations. The hypothesis that linear response fluctuations are statistically subordinated to irreversible outbursts of energy, so-called quakes, leads to predictions for averages and fluctuations spectra of physical observables in reasonable agreement with experimental results [see e.g. Sibani et al., Phys. Rev. B74:224407, 2006]. Using simulational data from a simple but representative Ising model with plaquette interactions, direct statistical evidence supporting the hypothesis is presented and discussed in this work. A strict temporal correlation between quakes and intermittent magnetization fluctuations is demonstrated. The external magnetic field is shown to bias the pre-existent intermittent tails of the magnetic fluctuation distribution, with little or no effect on the Gaussian part of the latter. Its impact on energy fluctuations is shown to be negligible. Linear response is thus controlled by the quakes and inherits their temporal statistics. These findings provide a theoretical basis for analyzing intermittent linear response data from aging system in the same way as thermal energy fluctuations, which are far more difficult to measure.Comment: 9 pages, 10 figures. Text improve

    Impact of gender on left atrial low-voltage zones in patients with persistent atrial fibrillation: results of a voltage-guided ablation

    Get PDF
    BackgroundGender-related differences have been reported in atrial fibrotic remodeling and prognosis of atrial fibrillation (AF) patients after ablation. We assessed in persistent AF the regional distribution of left atrial (LA) bipolar voltage and the extent of low-voltage zones (LVZ) according to gender as well as the results of a voltage-guided substrate ablation.MethodsConsecutive patients who underwent a voltage-guided AF ablation were enrolled. LA endocardial voltage maps were obtained using a 3D electro-anatomical mapping system in sinus rhythm. LVZ was defined as <0.5 mV.ResultsA total of 115 patients were enrolled (74 men, 41 women). The LA bipolar voltage amplitude was twice lower in the whole LA (p < 0.01) and in each atrial region in women compared with men, whereas the LA indexed volume was similar. LVZ were found in 56.1% of women and 16.2% of men (p < 0.01). LVZ were also more extensive in women (p = 0.01), especially in the anterior LA. Atrial voltage alteration occurred earlier in women than in men. In a multivariate analysis, the female sex (OR 12.99; 95% CI, 3.23–51.63, p = 0.0001) and LA indexed volume (OR 1.09; 95% CI, 1.04–1.16, p = 0.001) were predictive of LVZ. Atrial arrhythmia-free survival was similar in men and women 36 months after a single ablation procedure.ConclusionThe study reports a strong relationship between the female gender and atrial substrate remodeling. The female gender was significantly associated with higher incidence, earlier occurrence, and greater extent of LVZ compared with men. Despite the female-specific characteristics in atrial remodeling, LVZ-guided ablation may improve the AF ablation outcome in women

    Warming intensify CO2 flux and nutrient release from algal wrack subsidies on sandy beaches

    Get PDF
    Algal wrack subsidies underpin most of the food web structure of exposed sandy beaches and are responsible of important biogeochemical processes that link marine and terrestrial ecosystems. The response in decomposition of algal wrack deposits to global warming has not been studied in ocean-exposed sandy beaches to date. With this aim, passive open top chambers (OTCs) were used to increase soil temperature within the range predicted by the IPCC for western Europe (between 0.5 and 1.5 degrees C), following the hypothesis that the biogeochemical processing of macroalgal wrack subsidies would accelerate in response to temperature increase. The effect of temperature manipulation on three target substrates: fresh and aged macroalgae, and bare sand, was tested. Results indicated that a small warming (<0.5 degrees C) affected the wrack decomposition process through traceable increases in soil respiration through CO2 flux, inorganic nutrients within the interstitial environment (N and P), sediment organic contents measured through the amount of proteins and microbial pool through the total soil DNA. The different responses of soil variables in the studied substrates indicated that the decomposition stage of stranded macroalgae influences the biogeochemical processing of organic matter in sandy beaches. Thus, CO2 fluxes, releases of organic and inorganic nutrients and microbial activity intensify in aged wrack deposits. Our results predict that expected global warming will increase the release of inorganic nutrients to the coastal ocean by 30% for the N (21 Gg/year) and 5.9% for P (14 Gg/year); that increase for the flow of C to the atmosphere as CO2 was estimated in 8.2% (523 Gg/year). This study confirms the key role of sandy beaches in recycling ocean-derived organic matter, highlighting their sensitivity to a changing scenario of global warming that predicts significant increases in temperature over the next few decades.Peer reviewe

    Ancient Biomolecules and Evolutionary Inference

    Get PDF
    Over the past three decades, studies of ancient biomolecules—particularly ancient DNA, proteins, and lipids—have revolutionized our understand- ing of evolutionary history. Though initially fraught with many challenges, today the field stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spa- tial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field
    • …
    corecore