26 research outputs found

    Study of 12C(α,γ)16O reaction via the transfer reaction 12C(7Li,t)16O

    Get PDF
    International audienceThe 12C(a,g )16O reaction plays an important role in helium burning in massive stars and their evolution. However, despite many experimental studies, the low-energy cross section of 12C(a,g )16O remains highly uncertain. The extrapolation of the measured cross sections to stellar energies (E=300 keV) is made difficult by the presence of the two sub-threshold states at 6.92 (2+) and 7.12 (1−) MeV of 16O. In order to further investigate the contribution of these twosubthreshold resonances to the 12C(a,g )16O cross section, we performed a new determination of the a-reduced widths of the 6.92 and 7.12 MeV of 16O via a measurement of the transfer reaction 12C(7Li,t)16O at two incident energies, 34 and 28 MeV. The measured and calculated differential cross sections are presented as well as the obtained spectroscopic factors and the a-reduced widths for the 2+ and 1− sub-threshold states and their effect on the R-matrix calculations of 12C(a,g )16O

    Rapid onset of collectivity in the vicinity of 78Ni

    Full text link
    gamma-rays following the B and B-n decay of the very neutron rich 84Ga produced by photo-fission of 238U have been studied at the newly built ISOL facility of IPN Orsay: ALTO. Two activities were observed and assigned to two B-decaying states: 84gGa, I = (0\^-) and 84mGa, I = (3\^-, 4\^-). Excitation energies of the 2+1 and 4+1 excited states of 84Ge were measured at E(2+1) = 624.3 keV and E(4+1) = 1670.1 keV. Comparison with HFB+GCM calculations allows to establish the collective character of this nucleus indicating a substantial N=50 core polarization. The excitation energy of the 1/2+1 state in 83Ga known to carry a large part of the neutron 3s1/2 strength was measured at 247.8keV. Altogether these data allow to confirm the new single particle state ordering which appears immediately after the double Z=28 and N=50 shell closure and to designate 78Ni as a fragile and easily polarized doubly-magic core.Comment: 4 pages, ReVTe

    Fusion cross section measurements of astrophysical interest for light heavy ions systems within the STELLA project

    Get PDF
    This contribution is focused on the STELLA project (STELlar LAboratory), which aims at the measurement of fusion cross sections between light heavy ions like 12C+12C, 12C+16O or 16O+16O at deep subbarrier energies. The gamma-particle coincidence technique is used in order to reduce background contributions that become dominant for measurements in the nanobarn regime. The experimental setup composed of an ultra high vacuum reaction chamber, a set of 3 silicon strip detectors, up to 36 LaBr3(Ce) scintillators from the UK FATIMA collaboration, and a fast rotating target system will be described. The 12C+12C fusion reaction has been studied from Elab = 11 to 5.6 MeV using STELLA at the Andromède facility in Orsay, France. Preliminary commissioning results are presented in this article

    Trojan Horse Method experiments with radioactive ion beams

    Get PDF
    The Trojan Horse Method (THM) is an indirect method that allows to get information about a two body reaction cross-section even at very low energy, avoiding the suppression effects due to the presence of the Coulomb barrier. The method requires a very accurate measurement of a three body reaction in order to reconstruct the whole kinematics and discriminate among different reaction mechanisms that can populate the same final state. These requirements hardly match with the typical low intensity and large divergence of radioactive ion beams (RIBs), and experimental improvements are mandatory for the applicability of the method. The first reaction induced by a radio activeion beam studied by applying the THM was the 18F(p,α)15O. Two experiments were performed in two different laboratories and using different experimental set-ups. The two experiments will be discussed and some results will be presented

    Mesures de la section efficace de la réaction 7^7Be(p,γ)8\gamma)^8B à basse énergie et implications dans le problème des neutrinos solaires

    No full text
    LE 8B PRODUIT DANS LE COEUR DU SOLEIL A TRAVERS LA REACTION 7BE(P,) 8B EST LA SOURCE MAJEURE SINON UNIQUE DES NEUTRINOS DE HAUTES ENERGIES DETECTES DANS LA PLUPART DES EXPERIENCES DE DETECTION DES NEUTRINOS SOLAIRES, EXCEPTE GALLEX ET SAGE. CES EXPERIENCES ONT TOUTES MESURE UN FLUX DE NEUTRINOS INFERIEUR A CELUI PREDIT PAR LES MODELES SOLAIRES. PLUSIEURS EXPLICATIONS ONT ALORS ETE INVOQUEES POUR TENTER DE COMPRENDRE CE DEFICIT MAIS TOUTES NECESSITENT UNE CONNAISSANCE PRECISE DE LA VALEUR DE LA SECTION EFFICACE DE LA REACTION 7BE(P,) 8B, PUISQUE LE FLUX DES NEUTRINOS DU 8B EST DIRECTEMENT PROPORTIONNEL A CETTE DERNIERE. LA MESURE DIRECTE DE LA SECTION EFFICACE DE CETTE REACTION A L'ENERGIE SOLAIRE EST IMPOSSIBLE A CAUSE DE SA TRES FAIBLE VALEUR (DE L'ORDRE DU FEMTOBARN). POUR CONTOURNER CE PROBLEME, LES SECTIONS EFFICACES SONT MESUREES A PLUS HAUTE ENERGIE PUIS EXTRAPOLEES A L'ENERGIE SOLAIRE EN UTILISANT UNE DEPENDANCE EN ENERGIE THEORIQUE. LES SIX DETERMINATIONS EXPERIMENTALES PRECEDENTES DE LA SECTION EFFICACE SE DIVISAIENT EN DEUX GROUPES BIEN DISTINCTS PRESENTANT DES ECARTS DE L'ORDRE DE 30%, CE QUI IMPLIQUAIT UNE INCERTITUDE DU MEME ORDRE SUR LE FLUX DES NEUTRINOS DE HAUTES ENERGIES. REMESURER AVEC UNE MEILLEURE PRECISION LA SECTION EFFICACE DE CETTE REACTION EST DONC APPARU TRES IMPORTANT. DANS UN PREMIER TEMPS, NOUS AVONS EFFECTUE DES MESURES DIRECTES DE LA SECTION EFFICACE DE CETTE REACTION DANS LA GAMME D'ENERGIE COMPRISE ENTRE 0.35 ET 1.4 MEV (CM). CES EXPERIENCES ONT FAIT L'OBJET D'UNE MESURE PRECISE DE CHACUN DES PARAMETRES INTERVENANT DANS LA DETERMINATION DE LA SECTION EFFICACE. DANS UN SECOND TEMPS, NOUS AVONS ENTREPRIS DES MESURES DE LA SECTION EFFICACE AUPRES DE L'ACCELERATEUR PAPAP, A 185.8 KEV, 134.7 KEV ET 111.7 KEV, L'ENERGIE DANS LE CENTRE DE MASSE LA PLUS BASSE JAMAIS ATTEINTE A CE JOUR. LES RESULTATS SONT EN EXCELLENT ACCORD AVEC CEUX OBTENUS A PLUS HAUTES ENERGIES. LA VALEUR TROUVEE POUR LE FACTEUR ASTROPHYSIQUE S 1 7(0), PAR L'EXTRAPOLATION DE NOS DONNEES EST EGALE A 19.21.3 EV-B, CE QUI ENTRAINE UNE REDUCTION SENSIBLE DE L'INCERTITUDE SUR LE FLUX DES NEUTRINOS DE HAUTE ENERGIE DU 8B.NI

    Transfer reactions for nuclear astrophysics

    No full text
    Direct measurements of cross sections at stellar energies are very challenging - if at all possible. This is essentially due to the very low cross-sections of the reactions of interest (especially when it involves charged particles), and/or to the radioactive nature of many key nuclei. Direct measurements with charged particles are often performed at higher energies and then extrapolated down to stellar energies using R-matrix calculations. However, these extrapolations are delicate because of the possible existence of unobserved low-energy or sub-threshold resonances. In order to bypass the difficulties related to direct measurements, indirect methods such as transfer reactions are used. These experiments are usually performed at higher energies and their conditions are relatively less stringent than in direct measurements. However, these methods rely on theoretical models for which the input parameters may be an important source of systematic uncer-tainties and thus need to be determined carefully. In this manuscript, a short overview on the difficulties related to direct measurements will be given as well as a description of thetransfer reaction method and the theoretical concept behind. Finally, the method will be illustrated through two recent performed studies

    Indirect study of 13C(α,n)16O

    No full text
    The reaction 13C(α,n)16O is considered as the main neutron source for s-process in low-mass asymptotic giant branch stars. At low energies of astrophysical interest, the contribution of the subthreshold state 6.356 MeV of 17O to the 13C(α,n)16O cross section should be taken into account. However, the results of previous studies of this contribution lead to different conclusions. Hence, we investigated the effect of this resonance on the astrophysical S-factor through a new precise measurement of the alpha spectroscopic factor, S α, of the 6.356 MeV state using the transfer reaction 13C(7Li,t)17O at two different incident energies. The measured angular distributions and the obtained spectroscopic factors will be presented as well as their impact on C(α,n)16O cross section and reaction rate. © 2008 American Institute of Physics.SCOPUS: cp.pinfo:eu-repo/semantics/publishe

    Transfer reactions as tool for nuclear astrophysics: the 13 C(α,n) 16 O case

    No full text
    The cross section of the nuclear reactions involved in stellar nucleosynthesis (e.g. AGB stars) are often very difficult to measure directly at stellar energies because of their very small value. Moreover, this situation can be complicated by the existence of very low energy resonances and/or subthreshold resonances. Indirect methods such as transfer reactions and the ANC method offer the possibility to overcome these difficulties. In this context, recent indirect measurement of the reaction 13 C(α,n) 16 O is presented. The 13 C(α,n) 16 O reaction is considered as the main neutron source for s-process in low-mass asymptotic giant branch stars. At low energies of astrophysical interest, the contribution of the subthreshold state 6.356 MeV of 17 O to the 13 C(α,n) 16 O cross section should be taken into account. However, the results of previous studies of this contribution lead to different conclusions. Hence, we investigated the effect of this resonance on the astrophysical S-factor through a new precise measurement of the alpha spectroscopic factor, Sα, and the corresponding ANC of the 6.356 MeV state using the transfer reaction 13 C ( 7 Li,t) 17 O at two different incident energies. The measured angular distributions and the obtained spectroscopic factor and the asymptotic normalization constant (ANC) are presented as well as their impact on 13 C(α,n) 16 O cross section an

    Indirect study of 12C(α,γ)16O reaction

    No full text
    The radiative capture reaction 12C(α,γ)16O plays an important role in helium burning in massive stars and their subsequent evolution [1]. However, despite various experimental studies, the cross section of this reaction at stellar energies remains highly uncertain. The extrapolation down to stellar energy (Ecm∼300 keV) of the measured cross sections at higher energies is made difficult by the overlap of various contributions of which some are badly known such as that of the 2+ (Ex=6.92 MeV) and 1- (Ex=7.12 MeV) sub-threshold states of 16O. Hence, to further investigate the contribution of these two-subthreshold resonances to the 12C(α,γ)16O cross section, a new determination of their a-reduced widths and so their a- spectroscopic-factors was performed using 12C(7Li,t)16O transfer reaction measurements at two incident energies and a detailed DWBA analysis of the data [2]. The measured and calculated differential cross sections are presented as well as the obtained spectroscopic factors and the a- reduced widths as well as the assymptotic normalization constants (ANC) for the 2+ and 1- subthreshold states. Finally, the results obtained from the R-matrix calculations of the 12C(α,γ)16O cross section using our obtained a-reduced widths for the two sub-threshold resonances are presented and discussed.SCOPUS: cp.jinfo:eu-repo/semantics/publishe
    corecore